

Technische Informatik I

Vorlesung 3: Bool'sche Algebra

Mirco Hilbert

mail@Mirco-Hilbert.de

Übersicht

- Bool'sche Algebra
 - Operatoren und Eigenschaften
 - Schaltzeichen
 - Wertetabellen
 - Bearbeitung durch algebraische Gleichungen
- Schaltfunktionen
- einfache Schaltnetze
- Normalformen
 - disjunktive Normalform
 - konjunktive Normalform

Informationsrepräsentation

- Informationen wie Buchstaben und Zahlen können als Summe von Faktoren mit fester Basis dargestellt werden
- Diese Informations-Repräsentation wird physikalisch realisiert. Also wird folgendes erwünscht:
 - Die Verarbeitung der physikalischen Repräsentation sei identisch mit der Umformung der logischen Repräsentation
 - Zu jedem Zeitpunkt existiert eine eineindeutige Abbildung zwischen logischer und physikalischer Repräsentation

Mögliche physikalische Repräsentationen

Verschiedene physikalische Repräsentationen sind denkbar:

- Stärke eines hydraulischen oder elektrischen Stroms
- •Farbe, Intensität oder Phasenlage von Licht
- stufenlos veränderbare Spannungspegel
- drei diskrete Spannungspegel (3-wertige Logik):
 negative / keine / positive Spannung
- •zwei diskrete Spannungspegel (2-wertige binäre Logik): Spannung / keine Spannung

Heutiger Stand der Technik

 binäre Basis, d.h. Darstellung durch die Menge der bool'schen Werte

$$2 = \{0, 1\}$$

- Info-Repräsentation durch Binärwörter.
 - Ein Binärwort der Länge n ist ein Element von

•
$$exp(2, n) = 2 \times 2 \times \times 2$$

= $\{0,1\} \times \{0,1\} \times ... \times \{0,1\}$

Sequenz/Tupel von 0 und 1, Länge n

Heutige Stand der Technik

- Elektrische Info-Verarbeitung durch Funktionen auf Binärwörtern (Bool'sche Funktionen, Schaltfunktionen)
- Schaltnetze als Realisierung (physikalische Repräsentation) logischer Schaltfunktionen

Bool'sche Algebra

Definition (Binäre Bool'sche Algebra)

Ein algebraisches System (2, ∧, ∨, ¬)

- ^ (logisches имь) binäre Funktion
- ✓ (logisches oder) binäre Funktion
- ¬ (logisches Komplement, міснт) unäre Fkt
- Wertebereich {0,1}
- Funktionen definierbar durch Tabellen, wie folgt

Bool'sche Algebra

- Wertebereich {0, 1}
- Unäre Funktion definiert durch
 - f(0) = ??
 - f(1) = ??
- Binäre Funkion definiert durch
 - g(0,0) = ??
 - g(0,1) = ??
 - g(1,0) = ??
 - g(1,1) = ??

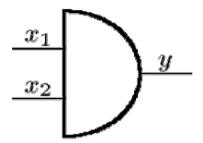
Bool'sche Algebra

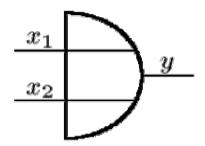
- Wir schreiben \neg in Präfix-Notation: $\neg a$ oder a
- Wir schreiben \(\times \) und \(\times \) in Infix-Notation:
 - Statt $\wedge (a,b)$ schreiben wir $(a \wedge b)$
 - Das gleiche für v
- Funktionen also definiert, wie folgt:

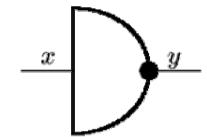
•
$$\neg 0 = 1$$
 $\neg 1 = 0$

Schaltzeichen

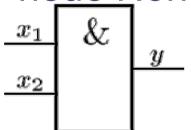
alte Norm

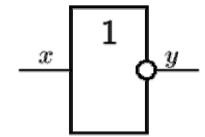






neue Norm

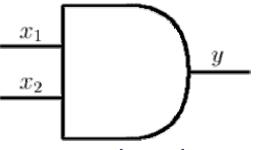




x

amerikanische Norm

 x_1



 x_2

Verteilte Systeme

Bool'sche Funktionen

bool'sche Funktionen

$$y = f(x_1, x_2) = x_1 \land x_2$$
 $y = f(x_1, x_2) = x_1 \lor x_2$ $y = f(x) = \neg x$

Wertetabellen

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

$$egin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

$$egin{array}{c|c} x & y \\ 0 & 1 \\ 1 & 0 \\ \end{array}$$

Bool'sche Basis-Operatoren I

Theorem: Alle binäre bool'schen Funktionen sind eine Komposition der beiden Basis-Operatoren \land und \neg ; bzw. \lor und \neg .

Beweis: Es gibt 16 binäre Bfnen (siehe unten).

Man schreibt die Kompositionen, wie gewünscht.

Beispiel: Nach dem Gesetz von DE MORGAN läßt sich v ausdrücken durch:

$$a \lor b = \neg(\neg a \land \neg b)$$

Ebenso läßt sich \(\triangle \) ausdrücken durch:

$$a \wedge b = \neg(\neg a \vee \neg b)$$

Bool'sche Gleichungen

- De Morgan'sche Gesetze
 - \neg (a \land b) = (\neg a) \lor (\neg b)
 - a=0, b=0: $\neg (0 \land 0) = \neg 0 = 1 = 1 \lor 1 = (\neg 0) \lor (\neg 0)$
 - a=0, b=1: $\neg (0 \land 1) = \neg 0 = 1 = 1 \lor 0 = (\neg 0) \lor (\neg 1)$
 - a=1, b=0: $\neg (1 \land 0) = \neg 0 = 1 = 0 \lor 1 = (\neg 1) \lor (\neg 0)$
 - a=1, b=1: $\neg (1 \land 1) = \neg 1 = 0 = 0 \lor 0 = (\neg 1) \lor (\neg 1)$
 - \neg (a \lor b) = (\neg a) \land (\neg b)
 - Ähnlicher Beweis

Ein Basis-Theorem

Theorem: Alle bool'schen Funktionen (unäre, binäre, n-äre für jede positive ganze Zahl n) sind eine Komposition der beiden Basis-Operatoren \land und \neg ; bzw. \lor und \neg .

Beweis: Ausgelassen.

Bool'scher Basis-Operator II

Theorem: Alle binären bool'schen Funktionen sind eine Komposition des Operators NAND:

$$a \text{ NAND } b := \neg (a \land b)$$

Beweis: Die Negation – läßt sich ausdrücken durch:

$$\neg a = \neg (a \land a) = a \text{ NAND } a$$

Die Konjunktion ∧ und Disjunktion ∨ durch:

$$a \wedge b = \neg \neg (a \wedge b) = \neg (a \text{ NAND } b)$$

 $= (a \text{ NAND } b) \text{ NAND } (a \text{ NAND } b)$
 $a \vee b = \neg \neg a \vee \neg \neg b = \neg (\neg a \wedge \neg b) = \neg a \text{ NAND } \neg b$
 $= (a \text{ NAND } a) \text{ NAND } (b \text{ NAND } b)$

Bool'scher Basis-Operator III

Theorem: Das gleiche gilt für den Scheffer'schen Strich | (NOR):

$$a \mid b := \neg a \land \neg b$$

Beweis:

Für die Negation:

$$\neg a = \neg a \land \neg a = a \mid a$$

Die Disjunktion:

$$a \lor b = \neg(\neg a \land \neg b) = \neg(a \mid b) = (a \mid b) \mid (a \mid b)$$

Die Konjunktion: Übung!

Mögliche Kombinationen zweier boolscher Variablen

x_1	x_2	0	$x_1 \wedge x_2$	$x_1 \wedge \overline{x_2}$	x_1	$\overline{x_1} \wedge x_2$	x_2	$(x_1 \wedge \overline{x_2}) \vee (\overline{x_1} \wedge x_2)$	$x_1 \lor x_2$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
	· ·	Null	Konjunktion	Inhibition	Transfer	Inhibition	Transfer	Antivalenz	Disjunktion
			AND					XOR	OR
x_1	x_2	1	$\overline{x_1 \wedge x_2}$	$\overline{x_1} \lor x_2$	$\neg x_1$	$x_1 \vee \overline{x_2}$	$\neg x_2$	$(\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2})$	$\overline{x_1 \vee x_2}$
$\frac{x_1}{0}$	$\begin{bmatrix} x_2 \\ 0 \end{bmatrix}$	1 1	$x_1 \wedge x_2$	$\overline{x_1} \lor x_2$	$-x_1$	$x_1 \vee \overline{x_2}$	$\neg x_2$ 1	$\frac{(\overline{x_1} \vee x_2) \wedge (x_1 \vee \overline{x_2})}{1}$	1
		1 1 1	$x_1 \wedge x_2$ 1 1	$ \begin{array}{c c} \overline{x_1} \lor x_2 \\ \hline 1 \\ 1 \end{array} $	$\begin{array}{c c} \neg x_1 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c c} x_1 \lor \overline{x_2} \\ 1 \\ 0 \end{array} $	$\begin{array}{c c} \neg x_2 \\ \hline 1 \\ 0 \end{array}$	$ \begin{array}{c c} (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \\ 1 \\ 0 \end{array} $	$ \begin{array}{ c c } \hline x_1 \lor x_2 \\ \hline 1 \\ 0 \end{array} $
0	0	$\begin{array}{ c c }\hline 1\\ 1\\ 1\\ 1\\ 1\\ \end{array}$	$ \begin{array}{c c} \hline x_1 \land x_2 \\ \hline 1 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c c} \overline{x_1} \lor x_2 \\ 1 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c c} \neg x_1 \\ 1 \\ 1 \\ 0 \end{array} $	$ \begin{array}{c c} x_1 \lor \overline{x_2} \\ 1 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c c} \hline $	$ \begin{array}{c c} (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \\ 1 \\ 0 \\ 0 \end{array} $	$ \begin{array}{ c c } \hline x_1 \lor x_2 \\ \hline 1 \\ 0 \\ 0 \end{array} $
0	0	1 1 1 1 1	$ \begin{array}{c c} \hline x_1 \land x_2 \\ \hline 1 \\ 1 \\ 0 \end{array} $	1	1	$ \begin{array}{c c} x_1 \lor \overline{x_2} \\ 1 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c c} \hline $	$ \begin{array}{c c} (\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2}) \\ 1 \\ 0 \\ 0 \\ 1 \end{array} $	$ \begin{array}{c c} \hline x_1 \lor x_2 \\ \hline 0 \\ 0 \\ 0 \end{array} $
0 0 1	0 1 0	1 1 1 1 1 Eins	1 1 1	1	1 1 0	$x_1 \lor \overline{x_2}$ 1 0 1 1 Implikation	1 0 1	$(\overline{x_1} \lor x_2) \land (x_1 \lor \overline{x_2})$ $\begin{matrix} 1 \\ 0 \\ 0 \\ 1 \\ \ddot{\text{Aqivalenz}} \end{matrix}$	1 0 0

Mai 02, 2002

Anzahl von Bool'sche Funktionen

- Unäre Schaltfunktionen:
 - Domäne-Wertebereich: {0,1} also zwei Elemente
 - Ziel-Wertebereich: {0,1} also zwei Elemente
 - Zwei Elemente in der Domäne, jeweils ein Wert aus dem Zielwertebereich und zwei möglich Werte
 - Auswahlsmöglichkeiten also exp(2,2) = 4
- f(0) = 0, f(1) = 0: False
- f(0) = 0, f(1) = 1: Identität
- f(0) = 1, f(1) = 0: Negation ¬
- f(0) = 1, f(1) = 1: True

Anzahl von Bool'sche Funktionen

- Binäre Schaltfunktionen:
 - Domäne-Wertebereich: {0,1} x {0,1}
 also exp(2.2) = 4 Elemente
 - Ziel-Wertebereich: {0,1} also zwei Elemente
 - Vier Elemente in der Domäne, jeweils ein Wert aus dem Zielwertebereich und zwei möglich Werte
 - Auswahlsmöglichkeiten also exp(2,4) = 16 binäre Schaltfunktionen

Anzahl möglicher Schaltfunktionen I

- Wir haben gesehen: Es gibt 16 verschiedene mögliche Schaltfunktionen bei gerade mal 2 Eingangsvariablen.
- Wie viele Funktionen sind aber bei n Eingangsvariablen möglich?
 - Sei $f: \mathbf{2}^n \to \mathbf{2}$ eine Schaltfunktion mit n frei belegbaren Variablen.
 - Dann gibt es 2ⁿ mögliche Kombinationen von Wertebelegungen für die n Variablen
 - Eine bestimmte Funktion f ist für jede dieser $w = 2^n$ Eingangskombinationen definiert, sie produziert also w Ergebnisse (jeweils 0 oder 1).

Anzahl möglicher Schaltfunktionen II

- Durch die Wahl unterschiedlicher Schaltfunktionen
 f: 2ⁿ → 2 lassen sich für diese w Ergebnisse 2^w
 Ergebniskombinationen vorschreiben.
- Es existieren also genau $2^{w} = 2^{2^{n}}$ bool'sche Funktionen, die alle möglichen Wertkombinationen der Eingangsvariablen auf alle Kombinationen von Resultaten abbilden.
- Bei n = 2 Eingangsvariablen existieren also $2^{2^2} = 2^4 = 16$ mögliche Schaltfunktionen.
- Bei n = 3 schon $2^{2^3} = 2^8 = 256$.

Auswahl von Schaltfunktionen

- Wir kürzen, wie folgt: XYZW bedeutet
 - f(0,0) = X, f(0,1) = Y, f(1,0) = Z, f(1,1) = W
- Wichtigste Funktionen sind
 - 0000: False; 1111: True
 - 0011: 1er Projektion; 0101: 2er Projektion
 - 0001: and; 0111: or
 - 1110; nand; 1000: nor, oder Scheffer'sche Strich
 - 0110: xor
 - 1001: äquivalenz; 1101: implikation (material conditional); 1011: reverse-implikation;

Schaltfunktion

 Eine n-äre Schaltfunktion bzw. Bool'sche Funktion ist eine Abbildung

• f:
$$exp(2,n) \rightarrow 2$$

{0,1} x {0,1} x ... x {0,1} \rightarrow {0,1}

• z.B.
$$f(x,y,z)$$
: $exp(2,3) \rightarrow 2$
 $\{0,1\} \times \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$
 $f(0,0,0) = 0$
 $f(0,0,1) = 1$
 $f(0,1,0) = 1$
 $f(0,1,1) = 0$

Beispiel 1

Schaltfunktion:

$$f: 2^3 \to 2 \text{ mit } f(x_1, x_2, x_3) = x_2 \land (x_1 \lor x_3)$$

• Wertetabelle:

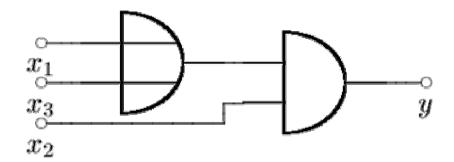
x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Beispiel 1 - Schaltnetz

Schaltfunktion:

$$f: 2^3 \to 2 \text{ mit } f(x_1, x_2, x_3) = x_2 \land (x_1 \lor x_3)$$

Realisierung als Schaltnetz



Funktion ist eine Komposition von \(\times \) und \(\times \)

Beispiel 2: Antivalenz (XOR)

Schaltfunktion:

$$f: 2^2 \to 2 \text{ mit } f(x_1, x_2) = (x_1 \land \overline{x_2}) \lor (\overline{x_1} \land x_2)$$

Wertetabelle:

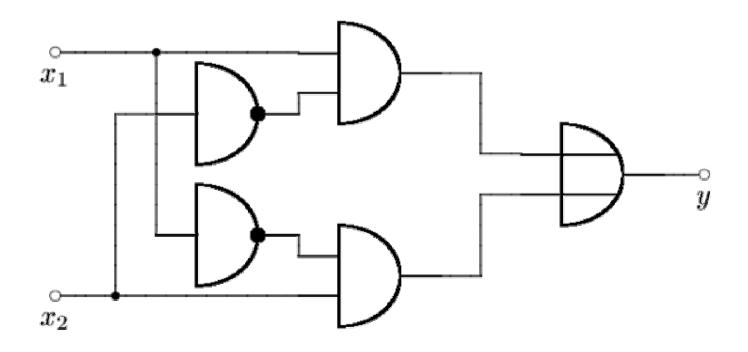
x_1	x_2	$f(x_1, x_2)$
0	0	0
0	1	1
1	0	1
1	1	0

Beispiel 2 - Schaltnetz

Schaltfunktion:

 $f: 2^2 \to 2 \text{ mit } f(x_1, x_2) = (x_1 \land \overline{x_2}) \lor (\overline{x_1} \land x_2)$

Realisierung als Schaltnetz:



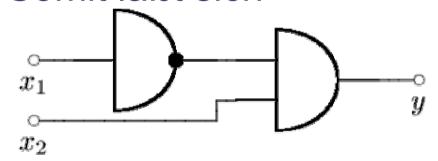
Abkürzungsnotation I

Da das Assoziativgesetz gilt, läßt sich₃ $(x_1 \wedge x_2) \wedge x_3$ auch notieren als $\bigwedge x_i$ x_2 $(x_1 \lor x_2) \lor x_3$ auch notieren als $\bigvee x_i$ x_1 x_2 x_3

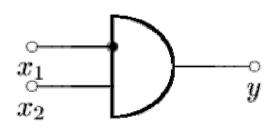
analog für beliebig großes i.

Abkürzungsnotation II

Der Übersichtlichkeit halber werden Inverter (NICHT-Schaltzeichen) nicht explizit eingezeichnet sondern durch invertierte Eingänge der nachfolgenden Schaltzeichen ausgedrückt. Somit läßt sich

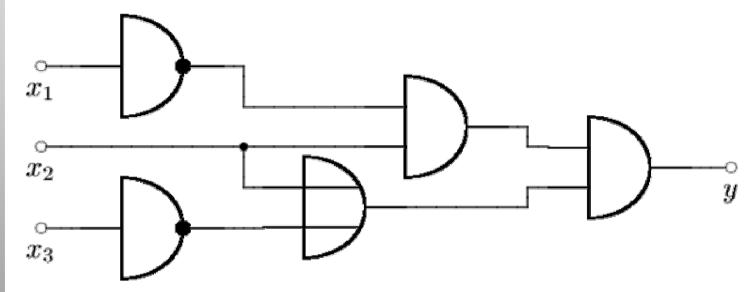


auch notieren als

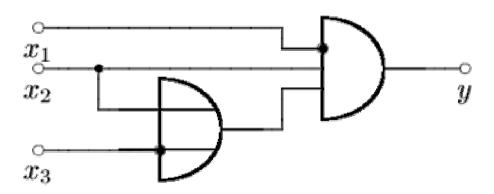


Beispiel 3

$$f(x_1, x_2, x_3) = \overline{x_1} \wedge (x_2 \vee \overline{x_3}) \wedge x_2$$



Abkürzende Notation:



Beispiel 3 - vereinfachbar?

Kann man die Schaltfunktion $f(x_1, x_2, x_3) = \overline{x_1} \wedge (x_2 \vee \overline{x_3}) \wedge x_2$

aus Beispiel 3 noch vereinfachen?

Schauen wir uns folgende Wertetabelle an:

x_1	x_2	x_3	$\overline{x_1} \wedge (x_2 \vee \overline{x_3}) \wedge x_2$	$\overline{x_1} \wedge x_2$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	0	0

Beispiel 3 - vereinfachbar?

Die Wahrheitswert-Belegungen der beiden bool'schen Funktionen

$$\overline{x_1} \wedge (x_2 \vee \overline{x_3}) \wedge x_2 \text{ und } \overline{x_1} \wedge x_2$$

sind gleich.

Somit sind sie äquivalent.

Wie aber läßt sich das formal beweisen?

Theoreme der Bool'schen Algebra I

Kommutativgesetz

$$a \wedge b = b \wedge a$$

$$a \lor b = b \lor a$$

Assoziativgesetz

$$(a \wedge b) \wedge c = a \wedge (b \wedge c) \quad (a \vee b) \vee c = a \vee (b \vee c)$$

$$(a \lor b) \lor c = a \lor (b \lor c)$$

Absorptionsgesetz

$$a \wedge (a \vee b) = a$$

$$a \lor (a \land b) = a$$

Idempotenzgesetz

$$a \wedge a = a$$

$$a \lor a = a$$

Theoreme der Bool'schen Algebra II

Distributivgesetz

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

 $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$

Gesetz von De Morgan

$$\neg(a \land b) = \neg a \lor \neg b \qquad \neg(a \lor b) = \neg a \land \neg b$$

- Beweise? Gleich wie bei De Morgan
- Theorem: Alle wahre Gleichungen (Gesetze)
 in ¬, ∧, ∨ sind Konsequenzen dieser Gesetze
 Beweis: Ausgelassen

Beispiel 3 - Vereinfachung

$$\overline{x_1} \wedge (x_2 \vee \overline{x_3}) \wedge x_2$$

läßt sich nach dem Kommutativgesetz umformen zu: $\overline{x_1} \wedge x_2 \wedge (x_2 \vee \overline{x_3})$

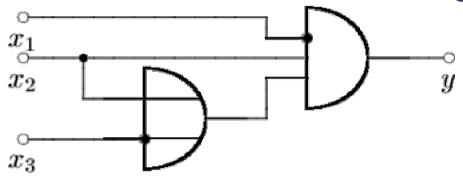
Das läßt sich nach dem Absorptionsgesetz umformen zu:

$$\overline{x_1} \wedge x_2$$

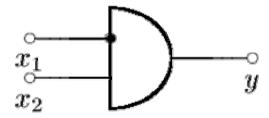
Somit ist die Äquivalenz der beiden Schaltfunktionen bewiesen.

Beispiel 3 - Vereinfachung

Somit läßt sich die Schaltung



vereinfachen zu



Literatur und Links

- Structured Computer Organization
 Andrew S. Tanenbaum, Prentice Hall, 1999
- Lectures on Boolean Algebra Paul Halmos, Springer-Verlag
- Rechneraufbau und Rechnerstrukturen
 W. Oberschelp und G. Vossen, 6. Aufl.,
 R. Oldenbourg-Verlag, 1994
- Kurz-Zusammenstellung "Formale Methoden der Linguistik I" Mirco Hilbert, WS 2000/01
- elearn.rvs.uni-bielefeld.de

Technische Informatik I

Nächste Woche:
Vorlesung 4: Vereinfachung von
Schaltfunktionen

Mirco Hilbert

mail@Mirco-Hilbert.de