
Betriebssysteme

Operating Systems

and some other things

Peter B. Ladkin

1

Administrative Details

ladkin@techfak.uni-bielefeld.de

http://www.techfak.uni-bielefeld.de/~ladkin

Sprechstunden: Mi 1100-1200

D6-131

Tutors: Michael Blume, Dirk Henkel,

Lutz Sommerfeld:

mblume@techfak.uni-bielefeld.de

dhenkel@techfak.uni-bielefeld.de

slsommer@techfak.uni-bielefeld.de

Times and Places:

See the course WWW page

Course Page and Notes: On the WWW,

accessible from my home page,

and the rvs/lehre page

in dvi and ps form.

2

What will you have to learn?

Use of the WWW. This is very easy

Simple use of the document processing

system LATEX. This is easy, but not

very easy.

Simple use of the specification language

TLA+, a machine-independent way of

describing distributed and concurrent

algorithms for operating systems

and other uses

Both LATEXand TLA+ are designed by

Leslie Lamport.

3

What is a distributed algorithm?

It runs on more than one physical

machine, and the machines are

usually some distance away from

each other

What is a concurrent algorithm?

One which is divided into parts

which run simultaneously

(virtually or actually)

Operating systems are full of

concurrent algorithms and programs

4

Using the WWW

Log in, use command Mosaic

Much better is netscape

but it might not work for you. If not,

use /vol/rvs/bin/netscape

Click on Open

An address window will appear

Fill in the address window with

http://www.techfak.uni-bie...../~ladkin

(as above) to get my home page.

Click on a sensitive word to

follow a link.

Follow courses and seminars then

Betriebssysteme to get the notes

5

After a while, you’ll want to write your

own WWW pages. This is also easy.

The language is called html

The easiest way to write it is:

look at and copy someone else’s

WWW page (this is trivial through

netscape’s View menu.)

Then put in your own text.

But you don’t need to do

this for this course, although you

will need to do so for any future

work with computers

6

You will need to know a little LATEX.

LATEX is a markup language, that is,

the formatting instructions are included

in the source itself along with the text

7

Here’s the text for this page:

\begin{slide}

Here’s the text for this page:

\begin{verbatim}

.......

\end{ verbatim}

(Actually, I cheated)

\end{slide}

(Actually, I cheated)

8

Here’s how a document looks in LATEX

\documentclass{article}

\usepackage{tla,rawfonts}

\author{Not Me}

\title{A Short History of the World}

\begin{document}

\maketitle

\section{The Parable}

Once upon a time, there were no computers.

Life was

\begin{itemize}

\item Simple

\item Brutish

\item Short

\end{itemize}

rather like the people

\end{document}

9

Here’s (roughly) how it looks compiled:

A Short History of the World
Not Me

1 The Parable

Once upon a time, there were no

computers. Life was

• Simple

• Brutish

• Short

rather like the people

10

So, to get you using LATEX :

Exercise 1.

Find and List all the Keywords

(Schlüsselwörter) for important concepts

in operating systems that occur in

Chapters 1-9 of Galvin/Silberschatz or

Tannenbaum or equivalent, and arrange

them in a hierarchy.

11

Classify them into

• Data Structures (e.g. Files)

• Objects (e.g. Processes)

• Methods (e.g. Remote-Procedure Call)

• Features (e.g. Concurrency)

• Any other class you can justify

(with your justification)

Organise them into a tree of subclasses

(e.g. is RPC a form of communication?)

Write your answer in LATEX

12

Warning: When you do a Prüfung,

I’ll ask you about the concepts that

weren’t on your list

You’ll find exercises by looking at

the Course page. The other exercises will

lead you to specify a

round-robin time-slice scheduler in TLA+.

This will involve understanding and

using semaphores as the synchronisation

primitive, and structuring your

specifications in modules, just like

a program. In fact, using TLA+ is rather

like programming - you write descriptions

of state machines - but in logic.

13

Hint for Exercise 1 :
You can use itemize environments
inside other itemize environments, like:

\begin{itemize}

\item One thing

\begin{itemize}

\item Lots of little things

\item More little things

\end{itemize}

\item One more big thing

\end{itemize}

This gives

• One thing

– Lots of little things

– More little things

• One more big thing

14

Now for some stuff about
operating systems

What is an operating system?
What does it do?

An operating system is a program
or a collection of programs that

• allows the computer to look as if
it’s a much more sophisticated
virtual machine than the ‘raw’
processor (CPU)

• allows all the various hardware
bits and pieces to work together
to get their respective jobs done

• organises the data and program
structures on the hardware

15

In the beginning

Switch the PC on. What happens?

A program runs. It checks the hardware.

Hardware: Floppy disk, hard disk, memory.

Then you get an MS-DOS prompt.

The program that checks the hardware

and gives you the prompt

and arranges for commands to be

executed is the operating system.

It also does other things.

16

Another story

Switch the Sparcstation on.

What happens?

A program runs. It checks memory,

file system, network services,

File system? Network Services?

What you see and what’s available when

you turn the computer on depends upon

what operating system the computer

is running. Here, Solaris, which is

a version of Unix, a very popular

system for scientific and technical

computing, and the system on which the

Internet grew up (mostly).

17

Processor

Central Processing Unit, CPU.

A piece of hardware that

executes an instruction.

Instruction operates on data.

Data may reside locally in registers,

or in a cache elsewhere in the chip,

or further away in memory,

or even further away on disk.

It adds, multiplies (unless it’s a Pentium)

puts a value in memory,

gets a value from memory.

To learn something about operating

systems, we must learn a little about

how a processor works

18

What’s the difference between an

operating system and other user software?

You, the user

save files,

send an email message to a colleague

on another machine

compile a program

while reading your mail,

call the Web pages

from a machine in California

(say, to learn about TLA)

Some of these actions are system actions,

some are applications software actions,

and whether, say, a window system is OS

or application really depends on

convention, that is, how the structure

of the system was conceived by its

designers - although there is a

lot of agreement.

19

How is all this done?

The fundamental concept is that of a
virtual machine.

The processor is a (real) virtual machine,
with limited capabilities.

An operating system such as Unix gives
interprocess and intermachine
communication capabilities. That’s a
more sophisticated virtual machine.

The window system, which organises the
user interface, lies ‘above’ that.

One can view the various virtual machines
as arranged in a hierarchy of levels
of increasing functional sophistication, in
which a virtual machine at Level n
provides functions which are used as
‘primitives’ by Level (n + 1), and which
itself uses the functions provided by
Level (n − 1) as primitive.

20

The bottom of the hierarchy:–

The processor ‘knows’:
get, add, multiply, store

bytes from memory and registers.

Data structures: bytes.

Near the top of the hierarchy:–

The networked machine ‘knows’:
verify password, store files

(on another machine),
call procedure (from another machine),
start applications (editor, mailserver),
save state of application,
swap one running program for another,
kill application.

Data structures: files, memory locations,
byte streams, messages, control blocks,
Ethernet addresses, address tables, ports,
Internet addresses, passwords,
login names,.......

21

Many structures in computer engineering
are based on this idea of a hierarchy of
virtual machines

The ISO Open Systems Interconnection
standard for inter-machine communication
is based on seven layers of protocols.
The TCP/IP packet-switching protocols
on which the Internet is based have fewer.

The PSOS (Provably Secure
Operating System) and the SIFT OS
for digital flight control (both SRI,
1970’s-80’s) were based on hierarchical
design so that they could be verified
(proved correct) by SRI’s EHDM
(Extended Hierarchical Development
Method) verification system

Hierarchical decomposition is still the
most fruitful way of proving algorithms
and designs correct, and systems such as
PVS (from SRI) and TLA depend on it

22

The lower-level Virtual Machine
implements
the higher-level Virtual Machine

How?

The LLVM simulates the HLVM.

• Define higher-level data structures ‘in
terms of’ lower-level data structures:
words in terms of bytes,
arrays in terms of words
sets in terms of arrays

• Define higher-level actions
‘in terms of’ lower-level actions:
send-message in terms of
a C program

(This technology is also used
when building compilers.)

23

The definition of higher-level functions

in terms of lower-level functions is more

accurate if it is done rigorously.

We use mathematics, especially logic

and set theory, or algebra.

I like to use the Temporal

Logic of Actions (TLA) of Lamport

TLA is a logic which includes

set theory, to describe mathematical

properties of program variables,

and operators to describe preconditions

and postconditions of actions, as well as

properties that hold for all possible

executions of the program

24

A TLA program specification

• describes the possible actions in

Formal Logic

• describes properties of the machine:

– Initial (Starting) Condition

– Safety (the only possible actions

are those described)

– Liveness (if certain actions

can happen, eventually they

will happen)

25

Program specification and verification

in TLA proceeds as follows:

We specify both the HLVM and LLVM,

then prove using logic that

LLVM.Spec ⇒ HHVM.Spec

There is a formal logic for doing that

supported by

• a proof system (a set of rules)

• a specification-writing LATEX style file

• a proof-writing LATEX style file

We won’t be using the proof system,

but we will be using the language

26

In order to make full use of the

computing power of the hardware on

which they run, operating systems

nowadays are (complicated or extremely

complicated) concurrent programs.

A concurrent program is one which

does (has the capability of doing)

multiple tasks ‘at once’ (that is,

a task may be started before other

tasks already running have finished)

We consider now how to write a

concurrent program in TLA. Such a

program describes a state machine

A TLA ‘program’ is a mixture of

imperative commands (expressed as

TLA actions) and assertions

about the state of the machine.

27

We first write a simple concurrent

program in a procedural language

which allows concurrent programming

and non-deterministic actions

It’s a variant of a language due to

E. W. Dijkstra, a pioneer in the logical

and mathematical design of operating

systems

Dijkstra also invented the semaphore,

a construct used to make programming

concurrent systems much easier

28

An example of TLA from Lamport,

The Temporal Logic of Actions,

ACM Trans. Prog. Lang. and Sys., 16(3),

872–923, May 1994.

Here is a program written in a simple

Dijkstra-like procedural language

var natural x , y = 0 ;

do 〈 true → x := x + 1 〉

〈 true → y := y + 1 〉 od

It means: x and y are natural numbers.

In the initial state, they’re both 0.

A step of the program either increments

x or increments y (it is not determined

which) and this step is iterated forever.

(The increment statements are

conditional, but the condition is trivial.)

29

Let’s now write a TLA description of this

program. The goal is to ensure that

anything that satisfies the TLA will do

what the ‘Dijsktra’ program is supposed

to do.

The TLA description uses two special

symbols: 2 and ′

2 says ‘for every state in the future’

It’s like a universal quantifier over

future states.

If z is a program variable, then

z ′ is the value of this variable

at the next state.

30

A program action is specified in TLA

by giving conditions on the current values

of the program variables (the

preconditions), and conditions on

their values in the next state in which

some program variable values have

changed (the postconditions).

Note that the next-change state

is not necessarily the next state!

Since x and y are the two program

variables, a program action will state

logical conditions on x , y, x ′ and y ′.

31

So here is (almost) the same program

written in TLA

InitΦ
∆
= (x = 0) ∧ (y = 0)

M1
∆
= (x ′ = x + 1) ∧ (y ′ = y)

M2
∆
= (y ′ = y + 1) ∧ (x ′ = x)

M ∆
= M1 ∨M2

Φ
∆
= InitΦ ∧ 2M

TLA is a logic, so these are logical

formulas. There is a major difference

distinguishing the TLA program from

the ‘Dijkstra’ program. Can you see it?

32

There is another not so obvious difference.
The ‘Dijkstra’ program is expected to run.
It’s in the meaning of the statements.
But nothing in the TLA logic says that
M has to do anything at all!

Φ asserts that the InitΦial condition
holds, and that ‘at all future states’
M holds, which is defined to mean that
M1 or M2 holds, which means that
x is incremented and y remains unchanged
or that y is incremented and x remains
unchanged.

But I said that a TLA specification says
how x and y change at the next program
change, rather than at the next system
state change.

Incrementing x might take 4 processor
steps. This specification could not
describe such an implementation, because
x does not change during the next step,
but rather after three more (micro-)steps.

33

I introduce some more notation.

Firstly, the assertion

‘A holds or f remains unchanged’:

[A]f
∆
= A ∨ (f ′ = f)

So we can say

‘M1 or M2 hold or the program

variables x and y remain unchanged’:

[M]〈x , y〉 ≡ M ∨ (〈x , y〉′ = 〈x , y〉)
≡ M ∨ ((x ′ = x) ∧ (y ′ = y))

The (unlive) specification of the program

Φ is now written thus

Φ
∆
= InitΦ ∧ 2[M]〈x , y〉

34

But how do we ensure that actions

M1
∆
= (x ′ = x + 1) ∧ (y ′ = y)

and

M2
∆
= (y ′ = y + 1) ∧ (x ′ = x)

are actually carried out?????????

Each action is a combination of

program statement with condition

It’s the purpose of specification to

describe what a program shall do.

The programmer must find a way of

implementing the specification. But when

it’s found, it may be described in TLA

also, and then proven to satisfy the

specification

35

A short introduction to

computer architecture

I describe here the structure of a

von Neumann architecture, in which

programs and data are stored, and programs

are executed one instruction after another

Such a machine is called a SISD

(Single Instruction stream, Single Data stream)

machine

36

A computer has a Central Processing Unit (CPU)

which does all the calculations.

It has local memory (called registers) in which

all the arguments and values of calculations

are held.

All the data that a program needs to use lies

in main memory, which is divided into

memory that can only be read

(Read-Only Memory, ROM)

and memory that can be read and written at

any particular location at any time

(Random-Access Memory, RAM)

In addition, a computer has much slower

secondary memory, such as a hard disk

or a (DAT streamer) tape, which stores much

more data than main memory, much cheaper,

but is also much slower.

37

Data has to be transferred between secondary

memory and main memory and then from main

memory to CPU before it can be manipulated.

A long cable with many parallel tracks, called

a databus, or simply bus, carries the data

between the units of a computer.

38

The picture on the next page is Encapsulated

Postscript. If your dvi viewer doesn’t show it,

view the Postscript version of this file.

If you keep a local copy, copy file

vNeum2.eps to the same directory as this file.

The same comment holds for the CPU diagram

to follow shortly. Name 2cpu-struct.eps

39

CPU RAMROM I/O

Databus

Addressbus

40

An instruction includes an operation

and (an) address(es)

For example

ADD R1 R2

is an instruction that adds the contents

of register 1 to the contents of register 2

and places the result in register 2

FETCH <Addr> R1

would copy the contents of memory at

memory address Addr into register 1.

STORE R2 <Addr>

would copy the contents of register 2

into memory address Addr.

41

I write <Addr> here to stand for an

arbitrary memory address. Such an instruction

would actually look like (in octal notation)

STORE R2 326551611142

42

How big is an instruction?

Suppose there are 64 possible instructions.

If we give each instruction a particular code

then we need 6 bits to code

26 = 64 instructions.

With 16 registers, one needs only 4 bits

to identify a register, so instructions such as

ADD R1 R2 can be written in

6 + 4 + 4 = 14 bits, which is one word.

However, suppose there are 232 = 4KMb

possible memory addresses. One needs a single

32-bit word per memory address. So

STORE R2 326551611142

needs two words: 6 + 4 = 10 bits for STORE

and R2, and the next word of 32 bits

for the memory address.

43

How does the processor know whether to read

one word or two? The first six bits of an

instruction are read and these say what

instruction it is. Then, the processor knows

what the arguments must be and thus how

much further to read (rest of word or

more words).

44

There is a register which contains the address

of the next operation to be performed. At the

end of execution of this instruction, the next

instruction is fetched from this address.

This register is called the program counter,

PC.

In the Fetch phase of execution, an

instruction is fetched from the location

specified in PC and placed in MAR.

The instruction code is ‘chopped off’ and

the arguments read. The arguments are

usually addresses, so these refer to

registers, or memory. If memory, the

address is sent to MBR and a request to

fetch/store sent on the address bus

to main memory, to fetch or store the data

which passes on the databus to the CPU.

45

The PC is set to the address of the next

instruction to be executed,

usually PC′ = PC + 1

but PC′ = <new-address> if the instruction

is GO TO <new-address>

There is an Arithmetic Logic Unit, ALU, which

actually performs the mathematical operations

on the data.

There is also a piece of the CPU, IR, which is

used for indirect addressing (when the address

to which something is to be stored/fetched is

itself held in the memory address specified

in the instruction), so two addresses (indirect

and direct) must be stored.

In the execution phase, the ALU performs the

operations on the data it sees before it.

46

In summary, a von Neumann CPU must
loop

• fetch instruction from address
given by PC

• decode an instruction word into

– instruction code

– arguments

• fetch (data) arguments

• perform the operation specified

• set PC to next instruction

endloop

47

DATABUS

ADDRESSBUS

MAR PCMBR

ALU IR

MR L A
Steuerwerk

Decodierer
Decoder.

Dataprocessor Instructionprocessor

48

Process Synchronisation

Coordination (or non-interference) of

multiple processes which share resources

is a source of difficult problems

Consider two concurrent processes

reading and writing shared memory

Process 1: (x : integer)

begin

x ← 0;

x ← x+1

stop

Process 2: (x : integer)

begin

read x

stop

What is the value of x read by the

second process if they run concurrently?

49

Another shared-memory puzzle:

Process 1: (x : integer)

begin

x ← 0;

x ← x+1

stop

Process 2: (x,y : integer)

begin

y ← 0;

y ← x+1

stop

If the memory location of x is the same

as the memory location of y, what is the

value after these processes have finished?

50

A third shared-memory puzzle:

The value of the variable z is

1 if there are 20 blocks or more

of available memory; and

0 if there are less than 20 blocks

of available memory.

Suppose the value of z is 1.

Suppose Process 1 needs 15 blocks

and Process 2 needs 15 blocks.

Suppose they both read z at

the same time. What happens?

51

Unless great care is taken, the

following kind of behavior can happen

Suppose Program 1 and Program 2 read

variable turn, which can be written by

Program 3. Program 1, Program 2 and

Program 3 thus share turn.

For example, Program 3 is the operating

system, which allows just one process at

a time to send something to the printer.

Is it to be Process 1? Or Process 2?

The value of turn will tell.

Suppose turn has 3 bits.

(We’ll see later why I chose this name.)

52

Initial value of turn is 000

Value 001 corresponds to Process 1

Value 101 corresponds to Process 2

Process 3 writes value 101 from right

to left, slightly before Process 2 reads

from right to left, and Process 1 from

left to right, as follows:

P3 writes bit3

P2 reads bit3

P1 reads bit1

P3 writes bit2

P2 reads bit2

P1 reads bit2

P3 writes bit1

P2 reads bit1

P1 reads bit3

This looks as follows

53

0 0 0

P3

?

0 0 1

P3,P2

?

0 0 1

P1

?

P3,P2

?

0 0 1

P1

?

P3

?

P2

?

0 0 1

P1
?

P3,P2

?

0 0 1

P1,P3,P2

?

0 0 1

P3
?

P1,P2

?

1 0 1

P3,P2

?

P1
?

1 0 1

P3,P2

?

P1
?

1 0 1

54

The result is that

P1 reads 001, P2 reads 101

Both processes send their files to

the printer at the same time.

An artistic outcome, maybe

but not what is wanted

Imagine if this happened in an

airplane flight control system!

55

So, one solution is to make sure

that only one process has access to

the variable at one time

This is called mutual exclusion

The construct used by Dijkstra is

called a semaphore

It’s like a token that only one

process has at one time

Processes try to grab the token.

Only at most one can obtain it.

The others have to wait until it’s

free again.

56

Specifically, a semaphore is a

shared variable whose access is limited

Only two operations may be performed:

it may be set by any process

and unset by a process that set it.

It’s an interlock that prevents another

process from entering its critical

section while the semaphore is set.

57

A semaphore is (for our purposes)

a single bit, that can only be set

by operation P (‘passeren’)

and released by operation V

(‘vrijgeven’). These operations

can only be successfully executed by

at most one process at a time.

The others must wait.

That is, the P and V operations

are atomic.

A semaphore can thus be used to

construct complex atomic actions

as follows

58

Here’s how two concurrent program parts

can use a semaphore to protect their

critical sections

var integer x , y = 0 ;

semaphore sem = 1 ;

cobegin loop α1: 〈 P(sem) 〉 ;

β1: 〈 x : = x + 1 〉 ;

γ1: 〈 V (sem) 〉 endloop

loop α2: 〈 P(sem) 〉 ;

β2: 〈 y : = y + 1 〉 ;

γ2: 〈 V (sem) 〉 endloop

coend

59

Here is a similar program written

now in TLA.

First, the initial condition:

InitΨ
∆
= ∧ (pc1 = “a”)
∧ (pc2 = “a”)
∧ (x = 0) ∧ (y = 0)
∧ sem = 1

60

Next, the three operations of

the first coroutine:

α1
∆
= ∧ (pc1 = “a”)
∧ (0 < sem)
∧ pc′1 = “b”
∧ sem ′ = sem − 1
∧ Unchanged 〈x , y , pc2〉

β1
∆
= ∧ pc1 = “b”
∧ pc′1 = “g”
∧ x ′ = x + 1
∧ Unchanged 〈y , sem, pc2〉

γ1
∆
= ∧ pc1 = “g”
∧ pc′1 = “a”
∧ sem ′ = sem + 1
∧ Unchanged 〈x , y , pc2〉

61

The three operations of the

second coroutine are similar:

α2
∆
= ∧ (pc2 = “a”)
∧ (0 < sem)
∧ pc′2 = “b”
∧ sem ′ = sem − 1
∧ Unchanged 〈x , y , pc1〉

β2
∆
= ∧ pc2 = “b”
∧ pc′2 = “g”
∧ y ′ = y + 1
∧ Unchanged 〈x , sem, pc1〉

γ2
∆
= ∧ pc′2 = “a”
∧ pc2 = “g”
∧ sem ′ = sem + 1
∧ Unchanged 〈x , y , pc1〉

62

The coroutines are defined as N1 and N2

and the program as N . The (live)

specification of the program is Ψ.

Ψ includes two assertions SFwN1 and

SFwN2 of fairness of the coroutines

N1
∆
= α1 ∨ β1 ∨ γ1

N2
∆
= α2 ∨ β2 ∨ γ2

N ∆
= N1 ∨N2

w
∆
= 〈x , y , sem, pc1, pc2〉

Ψ
∆
= ∧ InitΨ
∧ 2[N]w
∧ SFw(N1)
∧ SFw(N2)

63

In TLA, when we want program variables

to keep the same value during an

action, we have to say so explicitly

For example, consider the imperative

program ‘command’ x : = x + 1

This says ‘increment x ’.

This means: the value of x in the next

state shall be 1 greater than the

value of x in the current state

But it says nothing about the value

of another program variable y.

Is y allowed to change, or not?

Why should we bother about this?

Isn’t this a little peculiar?

64

In serial programs, it’s not expected

that other program variables will change

when x is incremented.

A serial program is one which has only

one ‘thread of control’

A thread of control is a linear sequence

of executed or executing program statements

When a serial program executes an

if P then A else B statement, it executes

either A or B, but not both. There is

a single thread of control

When a program executes a

cobegin A — B coend statement,

the program executes both A and B

at the same time. There are two threads

of control.

65

Concerning programs with multiple

threads of control (like most modern

operating systems), when we specify how

a machine behaves, we must say not only

that x increments, in TLA x ′ = x + 1

in procedural non-mathematical languages

x : = x + 1, but that other variables

don’t change

Suppose the other variables are y , z

In TLA we say ∧ x ′ = x + 1
∧ y ′ = y
∧ z ′ = z

If we don’t specify that they don’t

change, then they may do so.

That may mean that the program

doesn’t do what we want it to do

66

For example, let’s see what happens

with the semaphore example when we

don’t specify Unchanged .

Let λ1 be the action α1

without the Unchanged assertion.

Similarly for λ2 and α2.

λ1
∆
= ∧ (pc1 = “a”)
∧ (0 < sem)
∧ pc′1 = “b”
∧ sem ′ = sem − 1

λ2
∆
= ∧ (pc2 = “a”)
∧ (0 < sem)
∧ pc′2 = “b”
∧ sem ′ = sem − 1

Can λ1 and λ2 happen together?

67

To see whether they can, we consider

the action λ1 ∧ λ2. This is the action

that is an λ1 action and an λ2 action.

If it’s consistent, they can happen

together. If it’s contradictory, then not.

λ1 ∧ λ2 ≡ ∧ (pc1 = “a”)
∧ (pc2 = “a”)
∧ (0 < sem)
∧ pc′1 = “b”
∧ pc′2 = “b”
∧ sem ′ = sem − 1

It’s possible (it’s not contradictory).

Therefore, a joint execution of λ1 and λ2

is possible. Afterwards, both N1 and N2

execute instructions in their

critical sections β1 and β2.

That’s what a semaphore is supposed

to prevent.

68

So in this case, as in general,

the assertion Unchanged is necessary

to ensure that the behavior of the

programs is correctly stated (correctly

specified).

When writing program code in most

procedural languages, one cannot

write Unchanged .

So one must be sure to write a

program so that it can be proved that

the program leaves unmentioned variables

Unchanged if they have to be so

How?

69

We consider now some algorithms for

mutual exclusion. These algorithms

may be used directly if there is no

semaphore facility available in the OS.

Or they may be used in the OS itself

to implement semaphores. Then, these

semaphores could be used by other OS

programs or by user programs.

This is known as bootstrapping -

solving a problem in one special case so

that other cases can use the special-case

solution

70

One solution: a flag variable that lets

one process at a time into the critical

section.

Initialise flag = 0

Program 0

loop

while flag 6= 0 do no-op;

critical section;

flag = 1

endloop

Program 1

loop

while flag 6= 1 do no-op;

critical section;

flag = 0

endloop

71

Problem: Process 0 and Process 1

must alternate in their critical sections.

If Process 1 never wants to enter its

critical section, Process 0 can never

enter it again.

Problem: We must know how many

processes are competing before we

program this. For a printer queue,

this is no good.

Problem: While a process is

waiting, it’s executing code.

If many processors are sharing one

CPU, that is a waste of CPU time.

72

Another solution: make flag an array

flag: array [0..1] of 0..1

Program 0

loop

flag[0] = 1;

while flag[1] = 1 do no-op;

critical section;

flag[0] = 0

endloop

Program 1

loop

flag[1] = 1;

while flag[0] = 1 do no-op;

critical section;

flag[1] = 0

endloop

73

This solves the alternation problem.

But.....

Problem: Suppose Process 0 sets

flag[0] = 1, and then

before executing the while,

Process 1 sets flag[1] = 1.

Both processes wait forever.

Problem: We must know how many

processes are competing before we

program this.

74

flag: array [0..1] of 0..1

turn: {a, b}

Program 0

loop

1. flag[0] = 1;

2. turn = b;

3. while flag[1] = 1 and turn = b

do wait;

4. critical section;

5. flag[0] = 0

endloop

75

Program 1

loop

1. flag[1] = 1;

2. turn = a;

3. while flag[0] = 1 and turn = a

do wait;

4. critical section;

5. flag[1] = 0

endloop

76

turn is a shared variable.

What happens when both Process 0 and

Process 1 set turn at the same time?

We must be ensured that

either a or b results!

If turn is one bit, a
∆
= 0 and b

∆
= 1,

we must be ensured that the bit

has final value either 0 or 1

We hope this is ensured by the hardware.

Such hardware is called an arbiter

The arbitration problem: Lamport has

shown that under reasonable physical

assumptions a perfect arbiter does not

exist. But in practice it doesn’t seem

to be a problem.

77

But if there are many processes, one bit

does not suffice. turn must then have

many bits, and when two processes change

turn, who knows what will result?

Suppose turn has 3 bits, as before.

Remember that two processes reading turn

simultaneously may read different values if

turn is being changed at the time

One might read a value that’s not valid!

This happens if not all bit combinations

correspond to a valid value. (Suppose 000

and 101 are valid, 001 not, in our example.

P1 reads an invalid value.)

This cannot happen if every possible bit

combination corresponds to a valid value.

This can be ensured – maybe some processes

must have multiple corresponding values.

78

There are also provably good algorithms

for simultaneous reading and writing of

bits. For example, our earlier example

would not work if all reading/writing

is from right to left.

79

The algorithm again:

flag: array [0..1] of 0..1

turn: {a, b}

Program 0

loop

1. flag[0] = 1;

2. turn = b;

3. while flag[1] = 1 and turn = b

do wait;

4. critical section;

5. flag[0] = 0

endloop

80

Program 1

loop

1. flag[1] = 1;

2. turn = a;

3. while flag[0] = 1 and turn = a

do wait;

4. critical section;

5. flag[1] = 0

endloop

81

Informal Reasoning About the Algorithm:

Preliminaries

turn is the only shared variable.

Although flag is shared by P0 and P1,

the individual elements of flag are

written by one process only. Since the

elements of flag are 1 bit,

we may assume they’re written and read

atomically. Likewise for turn,

but turn is written and read

by both processes.

The reasoning proceeds by considering

states. Processes progress from

state to state by actions. An action is

‘between’ states. Conversely,

a state is ‘between’ actions.

(Remember, in TLA, an action is a

relation between states.)

82

The notation 0.N denotes statement N

in P0, similarly for P1. We introduce

the Boolean variables (‘state predicates’)

at−0.N , after−1.N :

at−0.N is true if and only if P0 is in a

state in which it is about to execute

statement N (informally, after action

(N − 1) and before N).

Similarly after−1.N .

The state predicates at−x .N , after−x .N

(where x is 0 or 1) are program variables.

Think of them as 1-bit program variables:

at-x .N abbreviates the statement

(at−x .N = 1)

¬at−x .N abbreviates the statement

(at−x .N = 0)

83

Safety (mutual exclusion)

Mutual exclusion means that both

processes cannot be simultaneously in

their critical sections. We show they

cannot both be at location 4.

This means that there is no state in which

at−0.4 and at−1.4 are both true.

*******Unfinished****

Assume there is a state in which

at−0.4 and at−1.4 are both true.

In this state, flag[0] = flag[1] = 1.

This is easy to see, because only P0

sets flag[0] and only P1 sets flag[1]

and P0 and P1 are serial processes.

These values are both set before this

point and not changed until afterwards.

84

To arrive at this state in which

(at−0.4 ∧ at−1.4) is true, 0.1, 0.2, 0.3

and 1.1, 1.2, 1.3 have been executed.

The postconditions of 0.3 and 1.3

(respectively, turn = a and turn = b)

cannot both have been true simultaneously

since turn has a unique value (we assume

a 6= b). This follows from the arbiter

assumption

Assume that turn is set atomically in

0.2, 1.2. That means that the statements

0.2, 1.2 have been executed either in

the order 0.2; 1.2 or in the order 1.2; 0.2.

Let’s assume the first. So turn = b in the

current state (no set of turn occurs

between 0.2 and now).

85

Now consider the tests in 0.3, 1.3.

Whether they happen one after the other

or simultaneously, the test in 0.3 fails

and that in 1.3 succeeds.

Therefore Process 1 waits and Process 0

proceeds into the critical section, and exits.

after−0.4 = at−0.5 is true. When 0.5 is

executed, after−0.5 is true, and

flag[0]← 0. Process 0 has left

its critical section, the condition in 1.3

becomes false and Process 1 can continue

into 1.4.

86

Liveness (progress):

If P1 gets stuck,

it sticks in the while

flag[0] = 1 and turn = 0

If so, P0 is after 0.2

It’s at 0.3 or at 0.4

(since at 0.5, flag[0] is reset to 0)

If turn remains 0 (hypothesis),

P0 exits 0.3, does 0.4 and 0.5 after 0.5,

turn is reset to 1

so P1 is no longer stuck

87

Processes P0 and P1 have been written in

a procedural language. Actions are written.

In TLA, state predicates and state

relations are written.

Procedural languages have sequential

composition.

(a; b) means action b is to follow action a

in sequential order. How do we convert

that into a TLA statement about state

predicates?

88

Two actions yield three states

The state predicates are

at-a, after-a, at-b, after-b

In every execution of (a; b),

after−a ≡ at−b

So the three states are described by

at-a, (after-a ≡) at-b, after-b

These state predicates serve the same

function as the program counter in

hardware or statement labels in software

89

In TLA, actions are binary relations

between states. There is no way of talking

about a relation between a state and the

next-after-next state.

In TLA, we could say

a
∆
= at−a ∧ (at−b)′

b
∆
= at−b ∧ (after−b)′

perform−compose(a, b)
∆
= a ∨ b

The sequential composition is now a single

action perform-compose with two

‘sub’-actions a and b. A perform-compose

action is either an a-action or a b-action.

The sequential composition (a; b) is thus

two successive perform-compose actions.

90

Exercise 3: Write a TLA specification

in a similar way to the previous ones which

defines a program consisting of the two

processes P0 and P1 executing the

Peterson algorithm for two-process

mutual exclusion.

91

It is not only systems with many

processors and shared memory which

need concurrency control. Another

sort of system in which it is needed is

a multiprogrammed system

Multiprogramming:

one processor, many processes

For example, this Sparcbook

Processes you can see:

shell, X Window System, editor (emacs),

xdvi, clock (?), console

(to see all, try ps -al)

92

A uniprocessor still needs concurrency

control if there is DMA (direct memory

access), in which disk transfers and other

data transfers happen in parallel with

processing. The memory (or other

resource) is being shared between

processor and other hardware

simultaneously

Concurrency control is hard to avoid

completely

93

We have been concerned mainly about

safety (for example, mutual exclusion)

but what about liveness?

On a uniprocessor, each process must

get a chance to progress. That means

that each must get regular opportunity

to use the processor

This is controlled by a process called

the scheduler

94

Different scheduling policies

• Each ready process is started

and run until done

• Each process

loop runs for a while in a time slice

of the processor and then waits while

other processes execute their timeslices

endloop

How do these two policies compare?

95

Process Liveness

The first policy does not satisfy

reasonable liveness properties. If a

program goes into an infinite loop, or

waits for a data event that doesn’t happen,

then it does not reach its end and

thus no other process can proceed.

The second policy satisfies reasonable

liveness properties. A process which

loops infinitely or waits prevents only

itself from continuing. All other processes

proceed as usual in their time slices.

(However, maybe the CPU could be more

effectively used in this case.)

96

Concurrency Control

The first policy brings no problems with

critical sections. An entire program is

run uninterrupted and therefore no

concurrency control is needed.

The second policy requires some

concurrency control. A critical section

may have many operations. The time

slice might run out in the middle,

interrupting the critical section.

Other processes must be hindered from

accessing the shared resource.

Setting variables such as turn and flag

may be accomplished atomically within

the time slice of some process.

Sophisticated control algorithms are

not really needed. Simpler ones suffice.

97

Applicability

In fact, the first policy is only possible

in an environment in which all processes

terminate. But most processes in a

modern OS do not terminate.

When does your shell terminate?

When you send it a signal (Ctrl-D) as

input from the keyboard.

No signal, no termination.

Similarly with your editor, dvi viewer,

clock display, console,.....

Hence the first policy is not practical

for a modern multi-purpose interactive

computer.

98

The first policy is appropriate for

real-time process control systems, in

which all the processes are precisely known

and their running times are also precisely

known

Real-time scheduling is often static,

that is, it’s precisely planned beforehand

and programmed in to the OS.

99

We have seen that the second policy could

make more effective use of the CPU

by not giving it to a process that’s

waiting or running an infinite loop

There’s nothing an OS should do

actually to prevent processes from

waiting on input (for example, from the

keyboard) or from looping indefinitely.

That’s up to the user-programmer.

But observe that if a process is waiting

on input, then the OS knows about it,

because the input must come from another

process or data structure (for example,

a keyboard input buffer) and the OS

must manage this transfer

When the OS can detect that a process

is waiting for an event that hasn’t yet

happened, it can plan to avoid running

that process until the event happens.

100

Process Run-Status

How can the OS maintain this knowledge?

The OS can assign a run-status attribute

to a process

A process may be

• running now

• ready but not running

• waiting on some event

Since processes have (at least) this

attribute, the OS needs to organise data

structures to keep this information.

101

Consider keeping the run-status info in

a relational database

Processes must have ID’s so that

the pair 〈PID, run−status 〉 may be entered

in the database and updated.

Consider how the OS decides who

shall run next

In the pure database D it must calculate

CHOOSE PID : PID ∈ {ID | 〈ID , ready 〉 ∈ D}
which selects a PID from amongst the

set of PIDs of ready processes

How does it do so fairly?

Maybe always the same two or three are

selected, and the others ‘starved out’

102

So it’s fairer to maintain, say,

a queue of ready processes

This can be, for example, a linked list

with the links an extra attribute of the

relation: 〈PID , ready , next−ready−process 〉

Ready processes may be inserted into the

queue in different ways, to reflect different

policies.

For example, processes may have different

priorities. A Priority queue maintains

separate queues for each priority level

and only runs ready processes of priority

(n + 1) when there are no more ready

processes of priority n.

103

Thus the relational database becomes larger:

〈PID , ready , priority , next−ready−process 〉

Priority scheduling is not guaranteed to be

fair between priority levels, but is fair

within priority levels

Higher priority processes are trusted

to complete on time and not hog resources.

104

Scheduling uses algorithms based on

statistical properties of the processes

However, there is a mathematical form to

preemptive scheduling of processes on a

single processor (as in multiprogramming)

105

For example, consider the three processes

Process P.1

a: [......] ;

b: [......] ;

c: [......] .

Process P.2

i: [......] ;

ii: [......] ;

iii: [......] .

Process P.3

x: [......] ;

y: [......] ;

z: [......] .

Here are two execution sequences:

a; i; ii; x; y; b; c; z; iii

or,
i; x; a; b; c; ii; iii; y; z

106

In fact, any interleaving of the individual

atomic operations of the processes

is a possible execution.

What is an interleaving?

Any sequence of actions E in which

1. every action is an action either

of P.1, or of P.2, or of P.3

2. the actions of P.1 occur in E exactly

in the order in which they occur

in P.1, and similarly for P.2 and P.3

This last condition is also expressed by

saying the projection of E on P.1

is equal to P.1 (there is a corresponding

equation), and similarly for P.2, P.3

107

In the semantics of TLA, processes

change state in discrete time steps.

Two actions of a machine may be

interleaved, or they may be simultaneous

(occurring at different time steps or

on the same time step).

But the time steps for different

machines do not have to be the same.

In a verification that one virtual

machine implements another, one proves

mathematically that the steps of one

machine are steps (or no-ops) of the other.

So in a verification, time steps are

shown to be comparable.

108

Here’s a TLA+ description of a scheduler

module FCFSScheduler

parameters

pc : variable

include Process as P1

include Process as P2

include Process as P3

109

module FCFSScheduler(cont’d)

predicates

Init
∆
= pc = 0

actions

Fetch(P)
∆
= ∧ RestoreState(P)
∧ pc′ = pc + 1

Save(P)
∆
= ∧ SaveState(P)
∧ pc′ = pc + 1

Run(POp)
∆
= ∧ POp
∧ pc′ = pc + 1

110

module FCFSScheduler(cont’d)

O

p
∆
= ∨ pc = 0 ∧ Fetch(P1)
∨ 1 ≤ pc ≤ 2 ∧ Run(P1.Op)
∨ pc = 3 ∧ Save(P1)
∨ pc = 4 ∧ Fetch(P2)
∨ 5 ≤ pc ≤ 6 ∧ Run(P2.Op)
∨ pc = 7 ∧ Save(P2)
∨ pc = 8 ∧ Fetch(P3)
∨ 9 ≤ pc ≤ 10 ∧ Run(P3.Op)
∨ pc = 11 ∧ Save(P3)
∨ pc = 12 ∧ pc′ = 0

111

module FCFSScheduler(cont’d)

temporal

Spec
∆
= ∧ Init
∧ 2[Op]pc
∧ WF pc(Op)

112

But, how does this work? Is the scheduler the

most important process?

There is a clock that raises an interrupt

The interrupt is signalled by a bit that is set

asynchronously by the clock

This bit is ‘shared’ although it’s not memory.

The clock can set to 1, the processor can read

and set to 0.

On the execution cycle of every instruction,

the processor looks at the clock interrupt bit.

If it’s 1, the next value of the program counter

is the value A in a particular location L which

is designed into the chip. The value A is set

by the operating system designer, and is the

address of the scheduler.

113

In practice, the scheduler doesn’t execute the

actions of the processes, it merely loads and

saves process state, and figures which is the

next process to have access.

114

The processes waiting to run are kept on a

queue, called the ready list.

When a process is Restored, it is removed from

the ready list, and its pc value is loaded into

the pc register of the processor, and the status

of the process becomes running.

When a clock interrupt is generated, the first

thing that the scheduler does is save the state

of the running process. The process itself be-

comes ready and joins the tail of the ready list.

The process at the head of the ready list is re-

stored.

115

If a running process must wait for something,

for example it must obtain some data which is

not in main memory but on disk, then at the

next clock interrupt, the process’s state will

be saved and the process (name) put on the

waiting list/heap. When the wait condition is

no longer valid (the data has arrived in main

memory), a notification will be put in a special

location which is looked at by the scheduler

when it is running, and if a waiting process has

completed its external activity, the scheduler

will restore the process (name) to the ready

list and remove it from the waiting heap.

116

But perhaps running the processes in this First-

Come, First-Served manner is not the best way

of scheduling.

Other forms of scheduling are

• shortest job first

• priority

• multilevel queue

117

We now show how process space protection

(usually ensured by the architecture,

i.e., the hardware) is specified in TLA+.

We specify

• a semaphore

• a process template

• a three-process system

118

module BinarySemaphore

parameters

BinSemVar : variable

predicate

init
∆
=

actions

P(BinSemVar)
∆
=

V (BinSemVar)
∆
=

119

module BinarySemaphore (cont’d)

temporal

spec
∆
=

120

module ProcessTemplate

parameters

d , pc : variable

predicate

init
∆
=

actions

TheActions
∆
=

temporal

spec
∆
=

121

theorem

spec ⇒ 2pc ≥ 0

module ThreeProcessSystem

parameters

x , y , z , Sem,
pc1, pc2, pc3,PC 1,PC 2,PC 3 : variable
ProcessBlockSize,
ProcessAddressSpaceStart : constant

vars
∆
= 〈x , y , z , Sem, pc1, pc2, pc3,PC 1,PC 2,PC 3〉

include ProcessTemplate as P1
with d ← x , pc ← pc1

include ProcessTemplate as P2
with d ← y , pc ← pc2

include ProcessTemplate as P3
with d ← z , pc ← pc3

include BinarySemaphore as Semaphore
with BinSemVar ←− Sem

122

module ThreeProcessSystem (cont’d)

predicate

init
∆
= ∧ PC 1 = ProcessAddressSpaceStart + pc1
∧ PC 2 = ProcessAddressSpaceStart

+ProcessBlockSize + pc2
∧ PC 3 = ProcessAddressSpaceStart

+(2× ProcessBlockSize) + pc3

actions

ProcOp
∆
= ∨ ∧ P1.TheActions

∧ (PC 1)′ = (pc1)′ − pc1 + PC 1
∨ ∧ P2.TheActions
∧ (PC 2)′ = (pc2)′ − pc2 + PC 2

∨ ∧ P3.TheActions
∧ (PC 3)′ = (pc3)′ − pc3 + PC 3

123

module ThreeProcessSystem (cont’d)

temporal

Spec
∆
= ∧ init
∧ 2[ProcOp]vars
∧ Liveness

124

module ThreeProcessSystem (cont’d)

theorem

Spec ⇒ 2(∧ PC 1 = ProcessAddressSpaceStart + pc1
∧ PC 2 = ProcessAddressSpaceStart

+ProcessBlockSize + pc2
∧ PC 3 = ProcessAddressSpaceStart

+2× ProcessBlockSize + pc3
∧ PC 1 <

ProcessAddressSpaceStart+
ProcessBlockSize

∧ PC 2 <
ProcessAddressSpaceStart+

+(2× ProcessBlockSize)
∧ PC 3 <

ProcessAddressSpaceStart+
+(3× ProcessBlockSize)

125

Specifications and Proofs in TLA+

A short introduction to the use

of TLA in verification

I specify an abstract buffer (a sequence)

and a concrete buffer (an array) and

prove formally that the concrete buffer

is a correct implementation of the

abstract buffer

This is similar to some early lectures

in my course on verification

126

First, an abstract buffer with two operations

push(something) and pop

The figure shows the state of the buffer before

each operation and the state after

buffer buffer′

< b,x,y,d > -

pop
< x,y,d >

< b,x,y,d > -

push(a)
< b,x,y,d,a >

127

Here is a more concrete version of the buffer

It’s an array

⊥ is the symbol for ‘nothing here’

Buffer Buffer′

⊥ b x y ⊥ d ⊥ -

push(a)

⊥ b x y ⊥ d a

⊥ b x y ⊥ d a -

move(6)

⊥ b x y d ⊥ a

⊥ b x y d ⊥ a -

move(2)

b ⊥ x y d ⊥ a

b ⊥ x y d ⊥ a -
pop

⊥ ⊥ x y d ⊥ a

128

Here’s how the concrete buffer is supposed

to correspond to the abstract buffer

as a data structure

ConcreteBuffer AbstractBuffer

⊥ b x y ⊥ d ⊥ - < b,x,y,d >

⊥ b x y ⊥ d a - < b,x,y,d,a >

⊥ b x y d ⊥ a - < b,x,y,d,a >

b ⊥ x y d ⊥ a - < b,x,y,d,a >

129

And here’s how the operations correspond

Buffer Buffer′

⊥ b x y ⊥ d ⊥ -

push(a)

⊥ b x y ⊥ d a

< b,x,y,d > -
push(a)

< b,x,y,d,a >

⊥ b x y ⊥ d a -

move(6)

⊥ b x y d ⊥ a

< b,x,y,d,a > -
no-op

< b,x,y,d,a >

⊥ b x y d ⊥ a -

move(2)

b ⊥ x y d ⊥ a

< b,x,y,d,a > -
no-op

< b,x,y,d,a >

b ⊥ x y d ⊥ a -
pop

⊥ ⊥ x y d ⊥ a

< b,x,y,d,a > -
pop

< x,y,d,a >

130

How does this fit together?

The concrete buffer simulates the abstract buffer

• they start in ‘equivalent’ states

• every action of the concrete buffer

corresponds either to an action

or to a non-action of the abstract buffer

• when the concrete buffer is sufficiently ‘live’,

then the abstract buffer actually does some

desired action

131

This method of state machine simulation is

common to many methods, for example

• TLA of Lamport

• Input/Output machines of Tuttle, Lynch,

Vaandrager

• the method of Lam and Shankar

(also TL-based)

An alternative is to have actions only—then

the operation of the system is an abstract

machine simulation, but not a state machine

simulation, since one doesn’t have state

132

How does one specify the actions?

Here’s one from the abstract buffer

module AbstractBuffer

actions

push(a)
∆
= ∧ a ∈ Data
∧ Len(buffer) < N
∧ buffer ′ = buffer ◦ 〈a 〉

Why is it written like this?

133

Let’s compare two ways of writing this action

module AbstractBuffer

actions

push(a)
∆
= ∧ a ∈ Data
∧ Len(buffer) < N
∧ buffer ′ = buffer ◦ 〈a 〉

badly-written actions

push(a)
∆
=

a ∈ Data ∧ Len(buffer) < N ∧ buffer ′ = buffer ◦ 〈a 〉

134

If that didn’t persuade you, try this

module AbstractBuffer

actions

push(a|b)
∆
= ∧ a ∈ Data
∧ Len(buffer) < N
∧ ∨ buffer ′ = buffer ◦ 〈a 〉
∨ buffer ′ = buffer ◦ 〈b 〉

badly-written actions

push(a|b)
∆
=

a ∈ Data ∧ Len(buffer) < N ∧
(buffer ′ = buffer ◦ 〈a 〉 ∨ buffer ′ = buffer ◦ 〈b 〉)

135

Now we shall see how to write the

two specifications. First, we define

the starting states of the variables.

module AbstractBuffer

predicates

Init
∆
= buffer = 〈 〉

module ConcreteBuffer

predicates

Init
∆
= ∀ n ∈ 1..N : Buffer [n] = ⊥

136

Next, we define the push actions

module Buffer Actions

abstract actions

push(a)
∆
= ∧ a ∈ Data
∧ Len(buffer) < N
∧ buffer ′ = buffer ◦ 〈a 〉

concrete actions

push(a)
∆
= ∧ a ∈ Data
∧ Buffer [N] = ⊥
∧ Buffer ′[N] = a
∧ ∀ i ∈ 1..(N − 1) :

unchanged Buffer [i]

137

And now the pop actions

module Buffer Actions

abstract actions

pop
∆
= ∧ Len(buffer) > 0
∧ buffer ′ = tail(buffer)

concrete actions

pop
∆
= ∧ Buffer [1] 6= ⊥
∧ Buffer ′[1] = ⊥
∧ ∀ i ∈ 2..N :

unchanged Buffer [i]

138

And there’s one concrete action left

module Buffer Actions

abstract actions

no − op
∆
= ???

concrete actions

move(k)
∆
= ∧ k ∈ 2..N
∧ Buffer [k] 6= ⊥
∧ Buffer [k − 1] = ⊥
∧ Buffer ′[k] = ⊥
∧ Buffer ′[k − 1] = Buffer [k]
∧ ∀ i ∈ 1..(k − 2) :

unchanged Buffer [i]
∧ ∀ i ∈ (k + 1)..N :

unchanged Buffer [i]

139

We have the initial conditions and

the actions. But we don’t yet have

a specification

A specification defines the initial conditions

and the actions—

and also the sentence that says

• the system starts in the initial condition

• if variables change values, it must be

because of a defined action (safety)

• it’s always true that

some desired action eventually happens

if it can (liveness)

140

First some notation.

[A]x means A ∨ (x ′ = x)

[A]〈x ,y 〉 means A ∨ (x ′ = x ∧ y ′ = y)

Intuitively, [A]x means

Either A or x doesn’t change value

141

module AbstractBuffer

imports

Sequences

parameters

buffer : variable

Data,N : constant

predicates

Init
∆
= buffer = 〈 〉

142

module AbstractBuffer (cont’d)

actions

push(a)
∆
= ∧ a ∈ Data
∧ Len(buffer) < N
∧ buffer ′ = buffer ◦ 〈a 〉

pop
∆
= ∧ Len(buffer) > 0
∧ buffer ′ = tail(buffer)

temporal

Spec
∆
= ∧ Init
∧ 2[pop ∨ ∃ b : push(b)]buffer
∧ WF buffer(pop)

143

module ConcreteBuffer

parameters

Buffer : variable

Data,N : constant

assertions

⊥ 6∈ Data

predicates

Init
∆
= ∧ ∀ n ∈ 1..N : Buffer [n] = ⊥

144

module ConcreteBuffer (cont’d)

actions

push(a)
∆
= ∧ a ∈ Data
∧ Buffer [N] = ⊥
∧ Buffer ′[N] = a
∧ ∀ i ∈ 1..(N − 1) : unchanged Buffer [i]

pop
∆
= ∧ Buffer [1] 6= ⊥
∧ Buffer ′[1] = ⊥
∧ ∀ i ∈ 2..N : unchanged Buffer [i]

move(k)
∆
= ∧ k ∈ 2..N
∧ Buffer [k] 6= ⊥
∧ Buffer [k − 1] = ⊥
∧ Buffer ′[k] = ⊥
∧ Buffer ′[k − 1] = Buffer [k]
∧ ∀ i ∈ 1..(k − 2) :

unchanged Buffer [i]
∧ ∀ i ∈ (k + 1)..N :

unchanged Buffer [i]

145

module ConcreteBuffer (will this never end?)

temporal

Spec
∆
= ∧ Init
∧ 2[pop ∨ ∃ b :

push(b) ∨ ∃ k : move(k)]Buffer
∧ WF Buffer(pop)
∧ WF Buffer(∃ k : move(k))

146

Verification means that one has

• A description of an implementation

• A specification

One must prove that the description of the

implementation fulfils the specification.

For logical methods, ‘fulfils’ = ‘implies’

147

For real systems, one must use hierarchical

methods in order to control the complexity.

Hierarchical methods: one describes an imple-

mentation I , then a more abstract view A1 and

proves that

I ⇒ A1

One describes then an even more abstract view

A2 and proves that

A1 ⇒ A2

But if that’s true, of course, then simply

I ⇒ A2

and there’s little need for the intermediate step.

It’s when there are many separate parts that

need to be brought together that hierarchical

decomposition pays off.

148

A simple hierarchical decomposition:

Level 1 a database distributed over 5 different
sites with query points over many more

Level 2 • a specification of a serial database

• a specification of a database split into
5 pieces

• a specification of a reliable protocol for
queries

Level 3 • a specification of an
implementation of a serial database

• a specification of an implementation of
a database split into 5 pieces

• a specification of an implementation of
a reliable protocol for queries

149

We start at the beginning. We have two spec-

ifications.

module Specifications

temporal

Conc − Buffer − Spec
∆
=

∧ Init
∧ 2[∨ pop

∨ ∃ b : push(b)
∨ ∃ k : move(k)]Buffer

∧ WF Buffer(pop)
∧ WF Buffer(∃ k : move(k))

Abs − Buffer − Spec
∆
=

∧ Init
∧ 2[∨ pop

∨ ∃ b : push(b)]buffer
∧ WF buffer(pop)

150

We want to show that

Conc-Buffer-Spec ⇒ Abs-Buffer-Spec

But it doesn’t!

Conc-Buffer-Spec has a variable Buffer which

doesn’t occur in Abs-Buffer-Spec

Abs-Buffer-Spec has a variable buffer which

doesn’t occur in Conc-Buffer-Spec

151

But are these variables essential? We merely

want to specify a buffer, without really caring

what specify object is a buffer.

Maybe we want to hide the buffer itself. We

do this in logic by existential quantification.

We prove

∃∃∃∃∃∃Buffer : Conc−Buffer−Spec

⇒ ∃∃∃∃∃∃buffer : Abs−Buffer−Spec

Or, more formally,

152

module Theorems

include ConcreteBuffer as CB(N)

include AbstractBuffer as AB(N)

theorems

∃∃∃∃∃∃Buffer : CB(N).Spec ⇒ ∃∃∃∃∃∃ buffer : AB(N).Spec

153

What does include mean?

It means that the variables, definitions,

operations, from ConcreteBuffer are visible

in this buffer, with the same names, except

that every operation or temporal definition

is prefixed with the given name of the

include -ed module.

Similarly for AbstractBuffer .

One can include variable s and constant s with

names other than the original ones – see Michael

Blume’s Einführung or the TLA+ Manual.

154

Now to the proof.

The proof is formal, formally laid out

in a hierarchical style.

There are two numbering schemes in pf.sty

One is absolute—

the.full.path.number

One is relative—

〈TheLevelNumber〉TheStepNumber

Here are examples of the same proof

with both schemes.

155

1. A ∧ (P ∧ Q ∧ R)

Proof:

1.1. A

Proof: I guess A just is true.

1.2. P ∧ Q ∧ R

Proof:

1.2.1. P ∧ Q

Proof:

1.2.1.1. P

Proof: I guess P just is true.

1.2.1.2. Q

Proof: I guess Q just is true.

1.2.1.3. Q.E.D.

Proof: Conjoin 1.2.1.1 and 1.2.1.2.

1.2.2. R

Proof: I guess R just is true.

1.2.3. Q.E.D.

Proof: Conjoin 1.2.1 and 1.2.2.

1.3. Q.E.D.

Proof: Conjoin 1.1 and 1.2.

156

〈1〉1. A ∧ (P ∧ Q ∧ R)

Proof:

〈2〉1. A

Proof: I guess A just is true.

〈2〉2. P ∧ Q ∧ R

Proof:

〈3〉1. P ∧ Q

Proof:

〈4〉1. P

Proof: I guess P just is true.

〈4〉2. Q

Proof: I guess Q just is true.

〈4〉3. Q.E.D.

Proof: Conjoin 〈4〉1 and 〈4〉2.

〈3〉2. R

Proof: I guess R just is true.

〈3〉3. Q.E.D.

Proof: Conjoin 〈3〉1 and 〈3〉2.

〈2〉3. Q.E.D.

Proof: Conjoin 〈2〉1 and 〈2〉2.

157

Proof step numbers in the buffer example

are relative.

See if you can assign path-numbers

to the proof steps as we go

158

So, how do we prove

〈0〉1. ∃∃∃∃∃∃Buffer : CB(N).Spec ⇒ ∃∃∃∃∃∃ buffer : AB(N).Spec

??

We can prove it if we treat Buffer like a variable

(which it is):

〈1〉1. CB(N).Spec ⇒ ∃∃∃∃∃∃ buffer : AB(N).Spec

and we try to find some state function f (Buffer)

that can interpret buffer .

159

By convention, we let

buffer
∆
= f (Buffer)

(this is the Refinement Mapping) and

AB(N).Spec be AB(N).Spec, with every occur-

rence of buffer replaced by buffer .

Then, we prove

〈2〉1. CB(N).Spec ⇒ AB(N).Spec

Predicate logic allows us to conclude what we

want from this.

160

Each specification is a conjunction

Init ∧ 2[action ∨ action ∨ ...]variables ∧ Liveness

It seems most reasonable to prove the

conjunction bit by bit:

〈3〉1. CB(N).Spec ⇒ AB(N).Init

〈3〉2. CB(N).Spec ⇒ 2[∨ AB(N).pop
∨ ∃ a : AB(N)push(a)]buffer

〈3〉3. CB(N).Spec ⇒WF buffer(AB(N).pop)

〈3〉4. Q.E.D.

Proof: Follows by propositional logic from

the conjunction of steps 〈3〉1, 〈3〉2 and 〈3〉3.

161

In fact, it turns out that we may prove

〈4〉1. CB(N).Init ⇒ AB(N).Init

〈4〉2. Q.E.D.

Proof: Follows directly by propositional logic.

〈4〉1. ∧ CB(N).Init
∧ 2[∨ CB(N).pop

∨ ∃ a : CB(N).push(a)
∨ ∃ k : CB(N).move(k)]Buffer

⇒ 2[∨ AB(N).pop
∨ ∃ a : AB(N)push(a)]buffer

〈4〉2. Q.E.D.

Proof: Follows directly by propositional logic.

〈4〉1. CB(N).Spec ⇒WF buffer(AB(N).pop)

〈4〉2. Q.E.D.

Proof: Follows directly by propositional logic.

162

Consider now the step

〈4〉1. CB(N).Init ⇒ AB(N).Init

〈4〉2. Q.E.D.

Proof: is simply math.

163

On the other hand, we may prove

〈4〉1. 2[∨ CB(N).pop
∨ ∃ a : CB(N).push(a)
∨ ∃ k : CB(N).move(k)]Buffer

⇒ 2[∨ AB(N).pop
∨ ∃ a : AB(N)push(a)]buffer

by proving

〈5〉1. (∨ CB(N).pop
∨ ∃ a : CB(N).push(a)
∨ ∃ k : CB(N).move(k)
∨ Buffer ′ = Buffer)

⇒ (∨ AB(N).pop
∨ ∃ a : AB(N)push(a)
∨ buffer ′ = buffer)

〈5〉2. Q.E.D.

Proof: directly by the TLA rule
STL.4 F ⇒ G

2F ⇒ 2G

164

Let’s do it......

〈5〉1. (∨ CB(N).pop
∨ ∃ a : CB(N).push(a)
∨ ∃ k : CB(N).move(k)
∨ Buffer ′ = Buffer)

⇒ (∨ AB(N).pop
∨ ∃ a : AB(N)push(a)
∨ buffer ′ = buffer)

Proof:

〈6〉1. CB(N).pop ⇒ AB(N).pop

〈6〉2. ∃ a : CB(N).push(a)⇒ ∃ a : AB(N).push(a)

〈6〉3. ∃ k : CB(N).move(k)⇒ buffer ′ = buffer

〈6〉4. Buffer ′ = Buffer ⇒ buffer ′ = buffer

〈6〉5. Q.E.D.

Proof: Follows by propositional logic from

〈6〉1, 〈6〉2, 〈6〉3, and 〈6〉4:

(A⇒ X) ∧ (B ⇒ Y) ∧ (C ⇒ Z) ∧ (D ⇒ Z)

⇒ (A ∨ B ∨ C ∨ D ⇒ X ∨ Y ∨ Z)

165

Now, part of this says:

a concrete push is an abstract push.

〈7〉1. ∃ a : CB .push(a)

⇒
∃ a : AB .push(a)

Proof:

Let: a : constant

〈8〉1. CB .push(a)

⇒
AB .push(a)

〈8〉2. Q.E.D.

Follows from 〈8〉1 by predicate logic.

166

〈8〉1. CB .push(a)

⇒
AB .push(a)

Proof:

〈9〉1. CB .push(a)⇒ a ∈ Data

Proof: Immediate from the definition

of CB .push.

〈9〉2. CB .push(a)⇒ Len(buffer) < N

〈9〉3. CB .push(a)⇒ buffer ′ = buffer ◦ 〈a 〉
〈9〉4. Q.E.D.

Proof: Follows immediately from 〈9〉1, 〈9〉2
and 〈9〉3 using propositional logic.

167

〈10〉1. CB .push(a)⇒ Len(buffer) < N

Proof:

〈11〉1. CB .push(a)⇒ Buffer [N] = ⊥
Proof: Immediate from the definition

of CB .push(a).

〈11〉2. Buffer [N] = ⊥ ⇒
Len(SelectSeq(Buffer ,NonVoid)) < N

Proof: Follows from the definition of SelectSeq

and Len, along with a certain amount of

data structure manipulation, which is omit-

ted.

〈11〉3. Q.E.D.

Proof: Follows from 〈11〉1, 〈11〉2 and the

definition of buffer by propositional logic.

168

What do all these symbols mean?

Let: NonVoid(k)
∆
= k 6= ⊥

buffer
∆
= SelectSeq(Buffer ,NonVoid)

FirstFull
∆
= Buffer [1] 6= ⊥

NotEmpty
∆
= ∃ i ∈ 1N : Buffer [i] 6= ⊥

169

module Sequences

import Naturals

mn
∆
= {i ∈ Nat : (m ≤ i) ∧ (i ≤ n)}

Len(s)
∆
=

choose n : (n ∈ Nat) ∧ ((domain s) = (1n))

Head(s)
∆
= s[1]

Tail(s)
∆
= [i ∈ 1(Len(s)− 1) 7→ s[i + 1]]

s ◦ t
∆
=

[i ∈ 1(Len(s) + Len(t)) 7→
if i ≤ Len(s) then s[i]

else t[i − Len(s)]]

Seq(S)
∆
= union {[(1n)→ S] : n ∈ Nat}

SubSeq(s,m, n)
∆
=

[i ∈ (1(1 + n −m)) 7→ s[i + m − 1]]

170

module Sequences (cont’d)

SelectSeq(s, test())
∆
=

let F [t : Seq({s[i] : i ∈ (1Len(s))})]
∆
=

if t = 〈 〉 then 〈 〉
else if test(Head(t))

then
〈Head(t)〉◦
F [Tail(t)]

else F [Tail(t)]
in F [s]

171

〈10〉1. CB .push(a)⇒ buffer ′ = buffer ◦ 〈a 〉

Proof:
〈11〉1. CB .push(a)⇒

SelectSeq(Buffer ,NonVoid) =
SelectSeq(

[i ∈ 1(N − 1) 7→ Buffer [i]],
NonVoid)

Proof:
〈12〉1. CB .push(a)⇒ Buffer [N] = ⊥

Proof: Immediate from the definition
of CB .push(a).

〈12〉2. Buffer [N] = ⊥
⇒
SelectSeq(Buffer ,NonVoid) =

SelectSeq([i ∈ 1(N − 1)
7→ Buffer [i]],NonVoid)

Proof: Follows immediately from the
definition of SelectSeq using manipula-
tions of the data structure.

〈12〉3. Q.E.D.
Proof: Follows immediately from 〈12〉1
and 〈12〉2 by propositional logic.

172

〈11〉1. (was on last slide)

〈11〉2. CB .push(a)
⇒

Buffer ′ =
[i ∈ 1(N − 1) 7→ Buffer [i]] ◦ 〈a 〉

Proof: Follows from the definition of CB .push
and the sequence operations.

〈11〉3. SelectSeq([i ∈ 1(N − 1) 7→ Buffer [i]]
◦ 〈a 〉,NonVoid) =

SelectSeq([i ∈ 1(N−1) 7→ Buffer [i]],NonVoid)
◦ 〈a 〉

Proof: Follows from the definition of SelectSeq
and NonVoid .

〈11〉4. Q.E.D.

Proof: Follows immediately from 〈11〉1, 〈11〉2,
〈11〉3 by propositional logic, substitution, and
the definition of buffer .

173

