
University of Bielefeld WS 2004/2005

Faculty of Technology

Networks and Distributed Systems

Diploma Thesis

Formal Task Analysis of Graphical
System Engineering Software Use

Thilo Paul-Stüve

10 March 2005

Examiners: Prof. Peter B. Ladkin, Ph.D.
Dipl. Inform. Bernd Sieker

Declaration

I completed this work without assistance and used no other sources or aids than
those listed. All quotations are marked as such.

Bielefeld, 10 March 2005 Thilo Paul-Stüve

iii

iv

Contents

1. Introduction 1
1.1. Overview . 1

1.1.1. Why-Because Analysis . 1
1.1.1.1. The Why-Because Graph Method 1

1.1.2. YB-Edit . 2
1.1.3. The “Friendly Fire” Accident 2
1.1.4. Human-Computer Interface 3

1.1.4.1. Direct Manipulation Interface 5
1.1.4.2. Direct Engagement versus Indirect Engagement . 5
1.1.4.3. Usability . 5
1.1.4.4. Fitt’s Law . 5
1.1.4.5. Locus of Attention 5
1.1.4.6. Modes . 6

1.1.5. Task Analysis . 6
1.2. Hierarchical Task Analysis . 6

1.2.1. Application . 7
1.2.2. The Procedure . 7
1.2.3. Representation . 7

1.3. The Goals, Operators, Methods, and Selectors Family 10
1.3.1. GOMS . 10

1.3.1.1. The Model Human Processor 10
1.3.1.2. GOMS Basic Definitions 10
1.3.1.3. Application . 11
1.3.1.4. Performing a GOMS Analysis 11

1.3.2. The Keystroke Level Model 12
1.3.2.1. KLM Operators 12
1.3.2.2. Execution . 14
1.3.2.3. Application . 14

1.3.3. Natural GOMS Language 14
1.3.3.1. Cognitive Complexity Theory 14

1.3.4. GOMS Language . 16
1.3.4.1. The GLEAN3 Simulation Tool 16

v

vi CONTENTS

1.3.5. Cognitive Perceptual Motor GOMS 20
1.3.5.1. Automation with Apex 20

2. Hierarchical Task Analysis of Performing a WBA 23
2.1. Data Acquisition . 23

2.1.1. Data Preparation for Presentation 23
2.2. Performing a WBA . 24

2.2.1. Gather Information . 24
2.2.2. Presorting of Factors . 25

2.2.2.1. Make a List of Facts 25
2.2.2.2. Make a Why-Because List 25

2.2.3. Make an Auxiliary List of Facts 25
2.2.4. Determine the Mishap . 25
2.2.5. Determine the Necessary Causal Factors 25
2.2.6. Correct the WB Graph . 26
2.2.7. Make the Report . 26

2.3. Results . 39

3. The Analysis of YB-Edit 41
3.1. The Topics Analysed . 41
3.2. Why GOMS Language? . 41
3.3. The User Interface of YB-Edit . 42
3.4. GOMSL Analysis of YB-Edit Use 43

3.4.1. The Procedure . 43
3.4.1.1. Dealing with related tasks 44

3.4.2. The Model . 44
3.4.2.1. The Tasks . 44
3.4.2.2. The Device . 45
3.4.2.3. The Selection Rules 46
3.4.2.4. The Methods . 46

3.5. The Results . 49
3.5.1. Modelling with GOMSL . 49
3.5.2. Using GLEAN3 . 50
3.5.3. Learning Analysis . 50
3.5.4. Execution Times . 52
3.5.5. Visual Operators and Memory Demand 53
3.5.6. Interaction with YB-Edit . 53

3.5.6.1. Pop-up Menus . 53
3.5.6.2. Two Basic Interaction Forms 53
3.5.6.3. The Input Dialogue Window 53
3.5.6.4. The External List of Facts 54
3.5.6.5. Errors . 54

CONTENTS vii

3.5.6.6. Removing a Node 55
3.5.6.7. Insertion of a Node 55
3.5.6.8. Single Object Manipulation 55

4. The New User Interface Design 57
4.1. Basic Concepts . 57

4.1.1. Direct Manipulation . 57
4.1.2. Managing the Attributes . 57
4.1.3. Incorporation of the List of Facts 57
4.1.4. Automation . 58

4.2. The Design . 59
4.2.1. A GUI Sketch . 59
4.2.2. The Interaction . 60

4.2.2.1. Accomplishing of the High Level Goals 60
4.2.3. Comments . 62

4.3. GOMSL Analysis of the New Interface Design Use 62
4.3.1. The Model . 62

4.3.1.1. The Tasks . 62
4.3.1.2. The Device . 63
4.3.1.3. The Selection Rules 63
4.3.1.4. The Methods . 64

4.4. Results . 65
4.4.1. Learning Analysis . 65
4.4.2. Execution Times . 65
4.4.3. Visual Operators and Memory Demand 67

5. Comparison 69
5.1. Learnability . 69
5.2. Execution Times . 69
5.3. The Models . 70
5.4. Resume . 71

6. Conclusion 73
6.1. Hierarchical Task Analysis . 73
6.2. GOMSL and GLEAN3 . 73
6.3. YB-Edit Use . 75
6.4. Outlook . 75

A. HTA Record Sheet 77

B. GOMSL Model of YB-Edit 79

C. GOMSL Model of the New Design 105

viii CONTENTS

Bibliography 129

List of Figures

1.1. “Friendly Fire” List of Facts. 3
1.2. “Friendly Fire” WB Graph as developed under my observance. . 4
1.3. An example of a HTA table: An analysis of overhead projector use

[Kirwan 92]. 8
1.4. The example shown in Figure 1.3 in diagram form [Kirwan 92]. . 9
1.5. GOMS example taken from [Card 83]. 12
1.6. KLM Operators [Card 80]. 13
1.7. NGOMSL model example of the Apple Macintosh Finder used for

file manipulation [Kieras 96]. 15
1.8. Visual object and task specification in GOMSL [Kieras 99]. 17
1.9. Selection rules and methods in GOMSL [Kieras 99]. 18
1.10. GLEAN3 architecture [Kieras 99]. 19
1.11. A CPM-GOMS model of a toll and assistance operator’s worksta-

tion use [John 95b]. 21

2.1. Performing a WBA. 24
2.2. Gathering the information. 27
2.3. Making a List of Facts. 28
2.4. Making a Why-Because List. 29
2.5. Making an auxiliary List of Facts. 30
2.6. Determining the mishap. 31
2.7. Determining the necessary causal factors. 32
2.8. Correction of the WB Graph . 33
2.9. Adding a node to the graph. 34
2.10. Removing a node from the graph. 35
2.11. Merging nodes. 35
2.12. Splitting a node. 36
2.13. Changing edges between nodes. 37
2.14. Changing node descriptions . 37
2.15. Making the report. 38

3.1. The program window of YB-Edit. The “Friendly Fire” accident
WB Graph is shown on the canvas. 42

ix

x LIST OF FIGURES

3.2. The context pop-up menus of YB-Edit. From left to right: node
menu, edge menu, and canvas menu. 43

3.3. The pop-up dialogue window of YB-Edit. 43
3.4. Learning analysis of YB-Edit use. 51
3.5. Execution times of YB-Edit. 52

4.1. Sketch of a new GUI design . 59
4.2. Learning analysis of the new interface design. 66
4.3. Execution times of the new interface design. 66

A.1. The HTA record sheet. 77

1. Introduction
Much good design evolves: the design is tested, problem areas are

discovered and modified, and then it is continually retested and re-
modified until time, energy, and resources run out. [. . .] Over time,
this process results in functional, aesthetically pleasing objects.

Don Norman [Norman 88]

This thesis describes the analysis of the use of a graphical software to support an
analyst in applying the Why-Because Graph method, which is an essential part
of the Why-Because Analysis method. The aim is to improve the user interface of
existing software to better support the user in applying the Why-Because Graph
method.

The tasks that specify the Why-Because Analysis are determined using the
Hierarchical Task Analysis method. Then the use of the existing software, YB-
Edit, to accomplish specific tasks during a Why-Because Analysis, is examined
using GOMSL, a GOMS method variant. A new interaction design based on the
results of the analysis is introduced. It is analysed with GOMSL as well and the
outcomes of both analyses are finally compared.

1.1. Overview

1.1.1. Why-Because Analysis

The Why-Because Analysis (WBA) is a failure analysis method designed for
complex systems consisting of components of different types, that are highly
influenced by their environment, such as airplanes or cars.

WBA consists of the Why-Because Graph (WB Graph or WBG) method and the
verification of its results by formal proof. The result of the WBA is a consistent
description of the failure of such a system. Please see [Loer 98, Ladkin 01] for
a detailed description of the WBA method. An introduction can be found in
[Ladkin 99].

1.1.1.1. The Why-Because Graph Method

The WB Graph method is based on David Lewis’s formal semantics for causality
[Ladkin 01]. The basic idea is that an event or state description A is a necessary

1

2 1. INTRODUCTION

causal factor of an event or state description B only if wether B occurs or not
depends on wether A occurs or not.

The WB Graph method is applied by collecting all events and states that are
important to the course of failure. These are called a facts. Then all causal rela-
tions between them are determined.

A Why-Because Graph states all causal relations between the facts that led
to the failure of a system. The nodes of the WB Graph represent the facts, and
the edges the causal relations between them. The system failure (mishap) is
represented by the top node of the WB Graph.

The possibility to gain easy access to the course of events by looking at a
graphical representation of the WB Graph helps to communicate the results of a
WBA.

1.1.2. YB-Edit

YB-Edit, described in [Sieker 04], is a graph drawing tool with a graphical user
interface specialised in supporting the Why-Because Graph method described in
[Loer 98, Ladkin 99, Ladkin 01]. It evolved from CI-Edit, which was developed
by Joachim Weidner, and CI-Edit2 developed by Bernd Sieker.

The CI-Edit programs were designed to handle Causal Influence Diagrams,
which are part of the Causal System Analysis, a method to analyse a systems
possible failures, described in detail in [Ladkin 01].

The purpose of YB-Edit is to support the analyst in applying the WB Graph
method in a more intuitive way than entering the corresponding Why-Because
Script, a language for textual description of WB Graphs defined in [Loer 98,
Ladkin 01], in a text editor. It enables the analyst to create the nodes and edges
of the WB Graph by using the mouse to manipulate a visual representation of
the graph. The changes made to the graph are displayed immediately. YB-Edit
further utilises the “verteiltes Datenarchivierungsystem” (VDAS), described in
[Hennig 03], which allows safe archiving of data and cooperative use of shared
graphs. The WB Graphs created with YB-Edit can be exported to PostScript page
description language files for print or presentation.

YB-Edit is the most popular software tool especially designed for the creation
of WB Graphs.

1.1.3. The “Friendly Fire” Accident

The “Friendly Fire — Deaths Traced to Dead Battery” case is used to teach per-
forming WBA in seminars. Three U.S. Soldiers were accidentally killed because
they changed the batteries of their GPS receiver. Before the batteries of the device
died, they targeted a Taliban Outpost to call in an airstrike for its coordinates.

1.1. OVERVIEW 3

They did not take into account that the loss of electric power caused the receiver
to initialise itself with its own coordinates and therefore called in the airstrike for
their own coordinates.

The corresponding List of Facts and WB Graph are shown in Figure 1.1, and
Figure 1.2.

Figure 1.1.: “Friendly Fire” List of Facts.

1.1.4. Human-Computer Interface

The human-computer interface is easy to find in a goss way — just
follow a data path outward from the computer’s central processor
until you stumble across a human being. [Card 83]

The human computer interface is the way how tasks are accomplished with a
computer system. It consists of the parts of the computer system which can be
seen, heard, or felt by the user, and the operations of the user to control its oper-
ation. It is “what you do and how it responds” [Raskin 00]. Some terms related
to user interface design are briefly introduced here. For detailed introductions
see [Dix 98, Raskin 00].

4 1. INTRODUCTION

Figure 1.2.: “Friendly Fire” WB Graph as developed under my observance.

1.1. OVERVIEW 5

1.1.4.1. Direct Manipulation Interface

With a direct manipulation interface, the user manipulates a graphic representa-
tion of the underlying data. [Shneiderman 82] introduces the term direct manip-
ulation interface and states the principles of direct manipulation:

Principles of Direct Manipulation

• the continuous representation of the object of interest

• gestures (physical actions) or labelled buttons presses instead of complex
syntax

• rapid incremental reversible operations whose impact on the object of in-
terest is immediately visible

1.1.4.2. Direct Engagement versus Indirect Engagement

Interfaces can be classified in interfaces with direct engagement of the user,
where the user feels as direct actor, and interfaces with indirect engagement,
where the user interacts through an invisible intermediary who executes com-
mands [Frohlich 97].

1.1.4.3. Usability

The usability of an interface is sometimes described as the “ease of use”. A
more exhaustive definition can be found in [Macaulay 95]: Usability is the ease
of learning, the ease of use, the flexibility of use, the effectiveness of use, and the
user satisfaction with the system.

1.1.4.4. Fitt’s Law

Fitt’s Law defines the time to reach a screen object with a pointing device. The
movement time to position the pointer over the target object is dependent on
the distance of the actual pointer position to the target object, and the size of the
target object. A common form is: movement time = a+ b log2 (distance/size+1),
where a and b are constants that are empirically determined. See [Dix 98], or
[Raskin 00].

1.1.4.5. Locus of Attention

The locus of attention is the one location of sensory input attended to at a given
time. While the focus of attention implies volition, the locus of attention can not
be controlled completely. A good user interface avoids the necessity to shift the

6 1. INTRODUCTION

locus of attention to control the program, because this distracts the user from the
task he wishes to complete. See [Raskin 00].

1.1.4.6. Modes

A human-computer interface is modal, when the system provides several differ-
ent system state dependent responses to one user action, while the actual state
of the interface is not the user’s locus of attention. Different modes in human-
computer interfaces are often irritating to the user and can lead to handling er-
rors, which might cause damage to work. Therefore they should be omitted. See
[Raskin 00] or [Norman 88].

1.1.5. Task Analysis

Task analysis are methods used to describe and evaluate human-machine or
human-human interactions. They help analyse, what tasks must be carried out
to achieve a specific goal.

Different task analysis methods provide the analyst with practices and tech-
niques to collect and organise information, and to make judgements on basis of
the obtained information. A detailed overview of task analysis methods in re-
gard to safety, productivity issues, and availability standards is given in
[Kirwan 92]. Task analysis procedures of use in the field of learning and training
systems are introduced in [Jonassen 89]. [Hackos 98] describes the use of task
analysis for interface design.

A specific task analysis method that gives a detailed view of how a user inter-
acts with a system is the GOMS method, which is described later.

1.2. Hierarchical Task Analysis

Hierarchical Task Analysis (HTA) was introduced by John Annett and Keith
Duncan in 1967 [Annett 67]. It was developed for task data collection and or-
ganisation for use in training applications and is now a general method for task
representation applied in several contexts. A task, as described in [Kirwan 92],
is the method to attain a goal. It is constrained by availability and cost of mate-
rials , provided equipment and facilities, availability and cost of services, time
obligations, legal obligations, and preferences of management and staff.

The result of a HTA is a hierarchy of operations and plans that must be carried
out to get a task done. The level of detail of the analysis is determined by the
analyst. It arises from the motive of the analysis and the kind of the analysed
task.

1.2. HIERARCHICAL TASK ANALYSIS 7

1.2.1. Application

HTA can be used through the whole design process of a system, or on an existing
system to determine how a task should or is carried out. It is used for interface
design, work organisation, user manuals, training, and error analysis.

1.2.2. The Procedure

Information is obtained through interviews or observation of different sources,
preferable experts of the field examined. The HTA method is to be understood
as a data collection method. It structures the process of data collection. Before
starting, the purpose and level of detail of the analysis must be determined.

First, the goal of the task has to be determined, where goal is the desired state
of the system under control. Next, the goal has to be described as a set of sub-
operations that lead to it, and plans when to carry them out. The sub-operations
are described iteratively as set of sub-operations until the desired level of detail
is reached.

Operations are units of behaviour: something people do. The ability to se-
lect appropriate actions after perceiving information, to carry them out, and to
perceive feedback is implied. Plans specify under which circumstances what op-
eration is carried out. A plan can be a sequence of actions, or conditional actions
dependent on time, process condition, or instructions like loops or options.

Experience in carrying out a HTA is of great advantage, since there are no strict
rules of how to decompose tasks in the correct way.

1.2.3. Representation

The information collected is usually arranged in tables (Figure 1.3) and in hierar-
chical diagrams (Figure 1.4). In tables detailed design notes can be added easily,
so they are often more thorough than the corresponding hierarchical diagrams.
They can be used to record and to communicate the analysis. Hierarchical dia-
grams are easier to assimilate and give a very good overview of the structure.
They are often used for presentation of the results of an analysis.

8 1. INTRODUCTION

Figure 1.3.: An example of a HTA table: An analysis of overhead projector use
[Kirwan 92].

1.2. HIERARCHICAL TASK ANALYSIS 9

Figure 1.4.: The example shown in Figure 1.3 in diagram form [Kirwan 92].

10 1. INTRODUCTION

1.3. The Goals, Operators, Methods, and Selectors
Family

1.3.1. GOMS

The Goals, Operators, Methods, and Selectors method (GOMS) was introduced
by Stuart K. Card, Thomas P. Moran, and Allen Newell for analysis of text pro-
cessor use in 1983 [Card 83].

GOMS is a method to produce quantitative and qualitative predictions of sin-
gle expert user interaction with passive systems, that react on actions of the user,
and active systems, that are able to produce actions by themselves (e.g. a com-
puter game) [John 95a]. It is a serial stage architecture analysis with program
like structures. A GOMS analysis goes down to a level of detail that is that of ba-
sic tasks like pressing a mouse button, moving the mouse to a specific object on
the screen, or pressing a key on the keyboard. Basic tasks have a specific execu-
tion time, that has been researched in experiments. To make time predictions the
specific execution times of the operations required to achieve a goal are added
up.

The complexity of a method can be measured by the complexity of the mod-
elling process and the straightness of its structure.

1.3.1.1. The Model Human Processor

The Model Human Processor (MHP) was introduced by Stuart K. Card, Thomas
P. Moran, and Allen Newell in 1983 [Card 83]. It is a model of human informa-
tion processing with parallel stages.

Human information processing is modelled by processors and storage sys-
tems: Perceptual processors acquire, reorganise, and store information in work-
ing memory. A cognitive processor works on the information stored in working
memory and commands the motor processors, which carry out physical actions.
All processors operate serially on their own and in parallel with each other, while
each processor has a specific cycling time.

The MHP forms the theoretical framework for GOMS.

1.3.1.2. GOMS Basic Definitions

[John 96, Dix 98] further explain the GOMS components:

Goals A goal is a structure that defines the state of affairs to be achieved and
determines the possible methods to accomplish. It further represents a
memory point to return to upon error to determine what is desired, what
methods are available, and what has been tried. Goals are normally broken

1.3. THE GOALS, OPERATORS, METHODS, AND SELECTORS FAMILY 11

down into subgoals, which must be accomplished to achieve a higher level
goal.

Operators An operator is the elementary perceptual, motor or cognitive act that
changes the user’s mental state or affects the task environment. The exe-
cution time of an operator is approximated by a constant, a probability
distribution, or function of a parameter. In contrast to the MHP, GOMS
operators are not executed in concurrence.

Methods A method describes the procedure for accomplishing a goal and is
made up of a conditional sequence of subgoals and operators with test
on the user’s contents of working memory and on the status of the task
environment. They represent skills rather than plans.

Selectors Selection rules choose the appropriate methods to achieve a goal on
base of the task environment features or decisions by the user. They are
rules like “if this and that is true then use method XY”.

1.3.1.3. Application

GOMS can be used through the whole design process of a system, or on an ex-
isting system to make predictions about overall performance time and time to
perform single tasks. Evaluation of alternative existing systems and rival sys-
tem designs are possible even at specification stage. GOMS is used for interface
design, user manuals, error analysis, and human cost calculation.

1.3.1.4. Performing a GOMS Analysis

The information necessary to build a GOMS model is obtained by performing
skills and knowledge acquisition techniques like questionnaires, structured in-
terviews, verbal protocols, Task Analysis for Knowledge Description (TAKD, see
[Dix 98] for an introduction), or HTA (see section 1.2).

When sufficient information is collected, the main goal has to be determined
first, followed by the method to accomplish it. The method has to be made up
of higher level subgoals at this point of the analysis. If necessary, selection rules
have to be specified for the method.

For every sub goal, a method with its own selection rules has to be determined.
The deeper the level of analysis, the more methods consist of operators than of
sub goals.

The process has to be continued recursively until all lowest level methods are
specified only by operators. Doing so brakes the main goal down completely to
basic acts of human performance. An example is shown in Figure 1.5.

12 1. INTRODUCTION

Figure 1.5.: GOMS example taken from [Card 83].

There are no detailed rules of how to decompose the achievement of a goal
in a useful way, so experience is of great use. Using structuring information
acquisition techniques such as HTA further helps in performing a GOMS analy-
sis, since the embodied organisation can be used as clue. Doing so is shown in
[Baumeister 00], for example.

1.3.2. The Keystroke Level Model

The Keystroke Level Model (KLM) was introduced by Stuart K. Card, Thomas
P. Moran, and Allen Newell in 1980 for comparison of the use of software with
different interaction styles [Card 80]. Although it was developed earlier than
GOMS, it now is regarded as the simplest GOMS modelling technique.

It is based on a simple serial stage model of human cognition and gives an
estimate about the expert user’s execution time of a task. The lack of a goal
structure limits KLM to low level task representation.

1.3.2.1. KLM Operators

There are three types of operators in KLM. The physical motor operators repre-
sent acts like typing a key on the keyboard, or pointing to a target on the screen
with a mouse. Cognitive operations are represented by the only mental operator
M that stands for the preparing for one or more physical actions. The system
response times are covered by the R operator. All KLM operators are listed in
Figure 1.6.

1.3. THE GOALS, OPERATORS, METHODS, AND SELECTORS FAMILY 13

Figure 1.6.: KLM Operators [Card 80].

14 1. INTRODUCTION

1.3.2.2. Execution

A task is deconstructed into a list of single KLM operators. The required data
can be obtained from sources such as specifications, handbooks, or through ob-
servation. The operators have particular execution times, which are added up to
get the execution time of a task. For a detailed explanation of the method look
in [Card 80].

1.3.2.3. Application

The missing ability to represent higher level goals limits KLM to use in elemen-
tary interface design and simple time predictions. At this low level of analysis its
predictions are very accurate and therefore usable. KLM is easy to understand
and models can be built in short time. In [Raskin 00] a detailed description of
how KLM is used for simple input dialogue design of a temperature converter
is given.

1.3.3. Natural GOMS Language

The Natural GOMS Language (NGOMSL) was introduced by David E. Kieras
for user interface design and as a higher level notation for Cognitive Complexity
Theory models in 1988 [Kieras 88].

NGOMSL is a structured natural-language notation for GOMS models with
advanced support for cognition. Its serial stage architecture is suitable for hier-
archical and sequential method modelling. As GOMS models, NGOMSL mod-
els enable the analyst to make quantitative and qualitative predictions of single
expert user interaction with passive systems and active systems. In addition,
it supports in checking for functional consistency and in making learning time
predictions.

An NGOMSL model example of the Apple Macintosh Finder used for typical
file manipulation tasks is given in Figure 1.7. A detailed description of NGOMSL
and its application can be found in [Kieras 88, Kieras 96, Kieras 97a].

1.3.3.1. Cognitive Complexity Theory

The Cognitive Complexity Theory (CCT) was introduced by David E. Kieras
and Peter G. Polson in 1985 for user complexity analysis by example of word
processor use [Kieras 85].

The basic concept of CCT models is to incorporate knowledge of how a user
accomplishes a goal, and how he does this with a specific device. Therefore CCT
models consist of two parts, the description of the device, and the description of
how to use it to accomplish a certain task.

1.3. THE GOALS, OPERATORS, METHODS, AND SELECTORS FAMILY 15

Figure 1.7.: NGOMSL model example of the Apple Macintosh Finder used for
file manipulation [Kieras 96].

16 1. INTRODUCTION

The device description is done in Generalised Transition Networks (GTN),
which are — as the name suggests — a more general form of transition net-
works. For information on transition networks in interface design see [Dix 98].
A production system is used to formalise the knowledge represented in a GOMS
model.

CCT is described in detail in [Kieras 85], and in [Dix 98].

1.3.4. GOMS Language

Goals, Operators, Methods, and Selectors Language (GOMSL) was introduced
by David E. Kieras for user interface design in 1995 [Kieras 95]. GOMSL is a
formalized form of the Natural GOMS Language which can be executed with
help of the GLEAN3 software tool.

A GOMSL model is made up of auditory and visual descriptions of the de-
vice, descriptions of the tasks to be accomplished, descriptions of the methods
to achieve the tasks, and selection rules to choose the appropriate methods to
accomplish those tasks.

A description of the auditory or visual characteristics of a device is done with
objects with specific attributes one can hear when audible or see when looking
at the object. Tasks are specified in so called task instances. These have attributes
that specify the name of the task, its type, information required during execution
of the task, and the next task to accomplish. In Figure 1.8 the description of the
visual objects and tasks that are required by a GOMSL model version of the file
manipulation example given in Figure 1.7 are shown.

A method to handle the task operation sequence must be included in the
model. A selection rule is specified as if. . . then statements. The methods are
specified by subgoals and operators. Figure 1.9 presents the GOMSL code re-
quired to define the selection rules and methods that are adequate to those in
the NGOMSL model example in Figure 1.7.

1.3.4.1. The GLEAN3 Simulation Tool

The GOMS Language Evaluation and Analysis 3 (GLEAN3) tool is a GOMS
model simulation tool that can process GOMSL. It is based on GLEAN, devel-
oped by Scott Wood in 1993, and was reimplemented by Anthony Hornof and
David E. Kieras and Kasem Abotel and Scott D. Wood in 1995 [Kieras 95].

The main difference between GLEAN and GLEAN3 is that the latter is based
on a simplified version of the EPIC architecture (Figure 1.10) and hence is more
powerful and better defined than its predecessor. EPIC is an architecture for
simulating human cognition and performance. See [Kieras 97b] for more infor-
mation. GLEAN3 executables can be obtained from [Kieras 05] and run on the
Macintosh and the Windows platform.

1.3. THE GOALS, OPERATORS, METHODS, AND SELECTORS FAMILY 17

Figure 1.8.: Visual object and task specification in GOMSL [Kieras 99].

18 1. INTRODUCTION

Figure 1.9.: Selection rules and methods in GOMSL [Kieras 99].

1.3. THE GOALS, OPERATORS, METHODS, AND SELECTORS FAMILY 19

Figure 1.10.: GLEAN3 architecture [Kieras 99].

The GLEAN3 tool interprets GOMSL models and carries out those calcula-
tions done by hand when using other GOMS methods, and furthermore is able
to make statements about working memory requirements and the learnability of
a model. The output of GLEAN3 is a leaning analysis, the execution times, and
an execution log. The learning analysis describes the learnability of the methods
defined in the model in giving the number of operators necessary to accomplish
each method, and the number of operators which can be learned from akin meth-
ods. The execution times given are the average and the total execution times of
the specific methods, the proportion of total execution time of the specific meth-
ods and the total estimated execution time for the whole model.

Furthermore GLEAN3 produces a complete detailed protocol of the execution
of the tasks specified in the model. This is useful for debugging the GOMSL
model and makes it possible to verify the consistency of the model.

A detailed description of the use of GOMSL and GLEAN3 is given in
[Kieras 99]. The use of GLEAN3 and GOMSL for user interface evaluation of
military shipboard workstations is described in [Kieras 04].

20 1. INTRODUCTION

1.3.5. Cognitive Perceptual Motor GOMS

Cognitive Perceptual Motor GOMS (CPM-GOMS) is the only GOMS method
that allows for analysis of tasks running in parallel and was introduced by Bon-
nie E. John in 1988 [John 88]. It is based on the Critical Path Method, which
is a network model for project management that can deal with sequential and
parallel tasks. Therefore CPM-GOMS is also referred to as Critical Path Method
GOMS.

Originally CPM-GOMS models were build with project management tools
and presented using PERT (Program Evaluation and Review Technique) charts.
The procedure to do so was nearly unspecified. In Project Ernestine (see
[Gray 92]), it was successfully used to evaluate a new toll and assistance op-
erator’s workstation design at the NYNEX telephone company and helped the
company to save almost $2 million dollars a year. Figure 1.11 shows a CPM-
GOMS model of the old workstation use.

CPM-GOMS is the only GOMS method that is incorporates all aspects of the
MHP.

1.3.5.1. Automation with Apex

Apex is a cognitive modelling tool developed by Michael Freed at the NASA
Ames Research Center [Freed 04]. It has a complex human operator model that
has the ability to cope with limited cognitive, perceptual, and motor resources.
Templates of human skills are integrated.

GOMSL models can be written alike GOMSL descriptions in PDL (Procedure
Description Language), which is the programming language of Apex. With the
help of Sherpa — a front end for Apex — it is then possible to create PERT charts
of the models.

For more information on this topic have a look at [John 02, Freed 03].

1.3. THE GOALS, OPERATORS, METHODS, AND SELECTORS FAMILY 21

Figure 1.11.: A CPM-GOMS model of a toll and assistance operator’s worksta-
tion use [John 95b].

22 1. INTRODUCTION

2. Hierarchical Task Analysis of
Performing a WBA

To learn what people are actually doing and what they might want to do during a
WBA, and to make sure that all relevant aspects are incorporated in the analysis
of YB-Edit use, I analysed the whole process of doing a WBA with the HTA
method at first. The tasks that incorporate the use of YB-Edit are used later as
high level goals for a GOMSL analysis to break the users interaction with YB-Edit
down to basic operations. This approach avoids falling into the trap of defining
the goal hierarchy of the use of YB-Edit by the interface of YB-Edit and provides
a thorough overview of doing a WBA for further integration of those parts of
WBA, which are not yet covered by YB-Edit. Differences in the outperforming
of the WBA method that might influence the use of YB-Edit are included this
way, too.

The level of analysis is that of higher level goals, since low level goals are to
be analysed later with the GOMSL analysis method.

2.1. Data Acquisition

To obtain the required information I made interviews with all people who are
experienced in WBA that I could reach. The interviewees are all members of the
RVS Group (German: RVS - Rechnernetze und Verteilte Systeme [Ladkin 05]),
have done several WBAs and are in part involved in teaching the method in
seminars. The basic question I asked was how they perform a WBA.

To record the information, I designed record sheets in the style of planning
sheets (see Appendix A), with a field for the task name and number and a table
with two columns, one for the subtasks and one for comments. Every Task that
was decomposed was noted on a new record sheet.

2.1.1. Data Preparation for Presentation

I used an outlining tool to collect the information acquired in the interviews.
Because they are easier to understand than the tables, I chose a hierarchical dia-
gram form for representation of the results of the analysis.

23

24 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

To draw HTA diagrams, I wrote a tool, which included the layout information
to gain a HTA diagram layout close to the standard. I used the tool to convert
the textual representation of the data to a format understood by a graph drawing
tool, which then processed the graphical representations.

Since the resulting HTA diagram measures 2.8 meters in width when printed
with a readable font size, I decided to split the diagram up in sub diagrams.

2.2. Performing a WBA

The performance of a WBA (Figure 2.1) always starts with the gathering of in-
formation. The information is then arranged either in a Why-Because List, or
a in List of Facts, and optionally an auxiliary List of Facts (e.g. lists in chrono-
logical order) are made. When this is done, the construction of the WB Graph
begins with the determination of the top node — the accident of the analysed
case. Then, the necessary causal factors are determined and the WB Graph is
corrected. This is represented as two sequent tasks even though there is not nec-
essarily a chronology, as stated in the corresponding plan (plan 0 in Figure 2.1).
Finally the analyst writes the report.

Figure 2.1.: Performing a WBA.

2.2.1. Gather Information

The gathering of information is done in a quite common way. First the sources
of information have to be identified and then the information material has to be
obtained. The information is then sighted and selected. See Figure 2.2 for details.

2.2. PERFORMING A WBA 25

2.2.2. Presorting of Factors

All interviewees extract the facts and arrange them. I observed two basic ways
to do so.

2.2.2.1. Make a List of Facts

A List of Facts is a collection of all facts found in the information material, that
are relevant to the accident. To obtain these facts, the information material is
again read in-depth and the detected facts are collected with reference number
with help of a text editor (see Figure 2.3).

2.2.2.2. Make a Why-Because List

A Why-Because List incorporates information about the facts and their relations
to each other. Therefore in difference to making a List of Facts, where the facts
are only collected, the relations between the facts are expressed as Why-Because
pairs of facts, that are recorded in a text editor. When this variant is used, the
counterfactual test is applied and a consistency check done at this early stage of
the WBA. See Figure 2.4.

2.2.3. Make an Auxiliary List of Facts

Auxiliary Lists of Facts are Lists of Facts where the facts are arranged in a specific
manner. They are optional, but often help to gather a better understanding of
the incident. First of all the classification system is laid down, then all facts are
sighted again and written down according to the classification using a text editor.
It happens, that the classification system chosen did not cover all facts, so that
the whole process has to be redone. The process is described in Figure 2.5.

2.2.4. Determine the Mishap

To spot the fact that makes the accident is the first step in developing a WB
Graph. Therefore the facts are reviewed and assessed. Doing so in a team is of
advantage. When the mishap is spotted, it is added as top node of the new WB
Graph using YB-Edit. See Figure 2.6.

2.2.5. Determine the Necessary Causal Factors

To determine the necessary causal factors, the facts are reviewed first. What is
done next is determined by the way the facts were arranged. If the facts are
available as Why-Because List, the necessary information can be directly read,

26 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

since the facts are arranged in Why-Because pairs. After viewing the facts the
causal factors can be added to the graph.

If the List of Facts is utilised, the facts must be assessed and the necessary
causal factors must be spotted, before they can be added to the graph with a
reference to the List of Facts entry. See Figure 2.7.

2.2.6. Correct the WB Graph

The graph is corrected while the necessary causal factors are determined. Some-
times the addition of a necessary causal factor causes inconsistencies in the graph,
that must be corrected and thus necessary causal factors are added while the
graph is in correction. Since the correction of the graph is not part of determin-
ing a causal factor, nor the graph is just corrected — what may incorporate a
determination of a necessary causal factor on occasion — after determining the
top node, the determining of necessary causal factors and the correction are rep-
resented as separate high level tasks.

To correct the WB Graph (see Figure 2.8), it is printed and viewed at, then
the causalities in the graph are assessed. To check the correctness of the causal
relations, the counterfactual test is applied. If considered necessary, the graph
is changed. These changes can be the addition of a necessary causal factor or
node (Figure 2.9), the removal of a node (Figure 2.10), merging of nodes (Figure
2.11), splitting of nodes (Figure 2.12), changing of edges (Figure 2.13), or node
descriptions (Figure 2.14). Note that many of these changes require the adaption
of the List of Facts.

2.2.7. Make the Report

The last step of a WB-Analysis is the making of the report. The report comprises
an overview, an abstract, the operations and results of the analysis, a comparison
of the conclusions of an external report and the conclusions of the WBA, and a
discussion of any differences between them. See Figure 2.15.

2.2. PERFORMING A WBA 27

Figure 2.2.: Gathering the information.

28 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

Figure 2.3.: Making a List of Facts.

2.2. PERFORMING A WBA 29

Figure 2.4.: Making a Why-Because List.

30 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

Figure 2.5.: Making an auxiliary List of Facts.

2.2. PERFORMING A WBA 31

Figure 2.6.: Determining the mishap.

32 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

Figure 2.7.: Determining the necessary causal factors.

2.2. PERFORMING A WBA 33

Figure 2.8.: Correction of the WB Graph

34 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

Figure 2.9.: Adding a node to the graph.

2.2. PERFORMING A WBA 35

Figure 2.10.: Removing a node from the graph.

Figure 2.11.: Merging nodes.

36 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

Figure 2.12.: Splitting a node.

2.2. PERFORMING A WBA 37

Figure 2.13.: Changing edges between nodes.

Figure 2.14.: Changing node descriptions

38 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

Figure 2.15.: Making the report.

2.3. RESULTS 39

2.3. Results

With the help of the HTA the high level goals of YB-Edit use for the creation and
manipulation of a WB Graph are determined. These goals are easy to identify
by looking for tasks that affect the manipulation of the WB Graph in direct and
therefore incorporate “use yb-edit” on their first lower hierarchy level.

High Level Goals of YB-Edit Use

• add a (top-)node to the graph (Figure 2.6)

• add a necessary causal factor to the graph (Figure 2.7)

• add a node in the graph (insert) (Figure 2.9)

• remove a node (Figure 2.10)

• change an edge between nodes (Figure 2.13)

• change the node description (Figure 2.14)

• merge nodes (Figure 2.11)

• split nodes (Figure 2.12)

The analysis went deeper than originally planed. This happened because what
a top level goal of YB-Edit use is was not transparent during the interviews. The
information gained illuminate the basic structure of how the tasks are accom-
plished and give a good idea of how the users of YB-Edit perceive the program.

Furthermore the analysis displays two different strategies in doing a WBA.
One strategy is to arrange the facts in a List of Facts, an approach established
since the analysis of the “Royal Majesty” incident [Ladkin 03], in which the facts
are collected in a list that can be referenced later. In this approach, the causal
relations are established while building the WB Graph (see Figure 2.3 and 2.8).
The other strategy is to arrange the facts in a Why-Because List, that require
the analyst to establish the causal relations earlier in the process of a WBA (see
Figure 2.4). See [Sieker 04] for further details.

Both strategies should be supported by a new design for the interface of YB-
Edit.

40 2. HIERARCHICAL TASK ANALYSIS OF PERFORMING A WBA

3. The Analysis of YB-Edit

3.1. The Topics Analysed

There is a wide range of topics, which are either too obvious, very well described
elsewhere, or just not ascertainable with task analysis methods, that I did not
make them topic of my analysis. These are topics like how to arrange the pro-
gram menu, the enhancements of providing an undo function, or the benefits of
seeing the whole graph at once or having a map of the graph for better orienta-
tion.

Useful information on GUI design regarding the use of standard components
like widgets and menus can be found e.g. in [Cooper 95] or [Raskin 00]. And
of course it would be good in any way to have an undo function, a really big
screen, or at least an orientation guide to navigate the WB Graph.

What is analysed is the direct manipulation of the representation of the graph
by the user. The way the user is able to create and alter a WB Graph using the
mouse as input device is what makes YB-Edit special. The Goal of this analysis is
to detect possible improvement opportunities or sources of error, that may have
found their way into YB-Edit during its evolution.

3.2. Why GOMS Language?

GOMSL has the highest formality and precision of all GOMS variants and the
required calculations can be automated with help of GLEAN3. It supports in
determination of the functional consistency of a model, which is of advantage
when optimising individual methods.

GLEAN3 provides the analyst with detailed time predictions of single method
execution, overall single method execution, and the whole process execution of
an expert user.

The ability to predict learning time is a GOMSL exclusive feature, even though
only relative comparisons of competing design models can be made.

41

42 3. THE ANALYSIS OF YB-EDIT

3.3. The User Interface of YB-Edit

YB-Edit’s GUI is shown in Figure 3.1. It consists of a menu bar at the top of the
window, a canvas where the WB Graph is drawn at the left, and a display list
at the right. The graph-related commands are executed through pop-up menus.
The elements of the graph — the nodes and the edges — and the canvas provide
particular menus, that contain commands related to them, which are evoked
through right mouse button clicks on these elements. These so called context
menus are shown in Figure 3.2. Information is entered in a pop-up dialogue
window with two input fields “Path” and “Label” (Figure 3.3).

Figure 3.1.: The program window of YB-Edit. The “Friendly Fire” accident WB
Graph is shown on the canvas.

3.4. GOMSL ANALYSIS OF YB-EDIT USE 43

Figure 3.2.: The context pop-up menus of YB-Edit. From left to right: node menu,
edge menu, and canvas menu.

Figure 3.3.: The pop-up dialogue window of YB-Edit.

3.4. GOMSL Analysis of YB-Edit Use

3.4.1. The Procedure

GOMSL models consist of descriptions of the device, the task, and the methods
and rules to accomplish the task with the specified device.

For a GOMSL analysis, a specific task is needed that can be fed to the pro-
duction system. To obtain a realistic task I observed the development of the WB
Graph of the “Friendly Fire” accident (see section 1.1.3) by RVS group members.
In this way I received a sequence of subtasks — each one corresponding to one
of the high level goals determined in section 2.31, that, when carried out, result
in the WB Graph in Figure 1.2.

The definition of the device is done by a visual description that represents the
GUI components of YB-Edit and the “Friendly Fire” WB Graph.

The methods defining the production system are those determined in section
2.3. The sub methods were obtained through the same observation I used to
specify the task, and through exhaustive examination of YB-Edit itself to detect
details such as keyboard input foci in particular states of the interface elements.

The selection rules, which form the other part of the production system, could
be derived from the high level goals. Higher cognitive tasks such as determining

1When I speak of high level goals in relation with GOMS, I am always referring to the high
level goals identified in section 2.3.

44 3. THE ANALYSIS OF YB-EDIT

the place where to enter a node are not part of the model, since GOMS can not
handle such tasks and they are independent of the GUI used.

3.4.1.1. Dealing with related tasks

Some observed actions could not be referred to the identified high level goals
and are not part of the use of YB-Edit in direct. They arise from interaction with
the working environment of the computer to deal with the List of Facts. These
were conspicuous changes from YB-Edit to a text editor and back, that conduced
to look up the next fact to add to the graph or to add new facts to the List of
Facts. Since these tasks obviously belonged to the use of YB-Edit, I integrated
them in the model and added a minimalistic text editor GUI representation to
the device description.

Another action that was not determinable by the HTA is a feature of YB-Edit:
the reindex function. To make the nodes referable by the analyst, the nodes are
provided with an index number. If the WB-graph is changed, it can happen that
the index numbers get mixed up in the area of the change. To deal with this issue
I integrated the use of this feature in the model.

3.4.2. The Model

I will only present examples of the GOMSL model of the YB-Edit use in this
section. For the complete model please have a look at Appendix B.

3.4.2.1. The Tasks

The single tasks are represented through task instances. They consist of an iden-
tifier, a list of properties, and a reference to the following task. The type of a task
is one of the high level goals or the related tasks. The first task in building the
“Friendly Fire” WB Graph is to determine a fact2 — the mishap:

Task_item : Task1
Name i s Task1 .
Type i s determine_fac t .
Next i s Task2 .

Later, when the methods are discussed, it will become evident why it contains
hardly any information (section 3.4.2.4). The second task is more telling. It de-
fines the task of adding a new node to the presently empty WB Graph. Its further
properties are the information the analyst would have gathered from the List of
Facts:

2Determine fact is not to be mixed up with the determine necessary causal factor sub operation
in the HTA in section 2 here. In the context of the GOMS analysis it stands for finding a fact
in the List of Facts and is — perhaps — inauspiciously chosen.

3.4. GOMSL ANALYSIS OF YB-EDIT USE 45

Task_item : Task2
Name i s Task2 .
Type i s add_new_node .
Label i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Node_number i s " 1 " .
Reference i s " (1+2) " .
Next i s Task3 .

The tasks that represent the addition of necessary causal factors contain one
more property. The node which represents the fact that was caused by the nec-
essary causal factor must be specified:

Task_item : Task4
Name i s Task4 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Reference i s " (3) " .
Parent i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Next i s Task5 .

Other tasks are modelled in a similar way, and since the “Friendly Fire” WB
Graph was built up almost straight forward, the shown tasks represent closely
the rest of the task list.

3.4.2.2. The Device

The Graphical User Interface The Device is represented with the help of vi-
sual objects. Like task instances, they consist of an identifier and a list of prop-
erties. These properties are visual properties the user of the device sees, if he is
looking at the object. YB-Edit’s program window is represented this way:

Visual_object : Ybedit_program_window
Type i s window .
Label i s "YB−Edit " .

A menu entry is represented through:
Visual_object : Add_new_node

Type i s menu_entry .
Label i s " add new node " .

Other interface elements are represented in a similar way.

The WB Graph The WB Graph does belong to the device description, too, be-
cause it is displayed by YB-Edit. Since one can not alter the visual description
from within a running GOMSL model, the whole graph must be defined before-
hand and the GOMSL analyst must take care that the modelled user does not
look at things, which are not existent at a given time. The WB-graph is repre-
sented through nodes:

Visual_object : Node_11
Type i s node .
Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Reference i s " (3) " .

46 3. THE ANALYSIS OF YB-EDIT

Children i s " 2 " .
Child1 i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .
Child2 i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Parents i s " 1 " .
Parent1 i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

And edges:
Visual_object : Edge_11−1

Type i s edge .
Source i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Target i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

3.4.2.3. The Selection Rules

The selection rules are given in the perform graph actions method and determine
which method is executed depending on the actual task in the form of if. . . then
rules. In the model of YB-Edit use there is one rule for every high level task,
rules to deal with the List of Facts, and one rule for re-indexing the graph. Every
information needed to accomplish the task that can not be determined in the
model (e.g. by looking at a visual object) are passed as working memory tags to
the methods.

3.4.2.4. The Methods

The methods describe what a user of YB-Edit does to achieve a goal. YB-Edit
provides contextual menus as interface to its functions to add a node or a neces-
sary causal factor to the graph, and to remove a node and remove an edge from
the graph. Adding an edge is done by drag and drop operation. If input of data
is reasonable after a command, an input window pops up, where the data can
be entered. The method for the add necessary causal factor goal, for example,
therefore looks like this:

Method_for_goal : Add ncf using
<ncf_parent > , and < n c f _ l a b e l > ,
and <ncf_re fe r ence > , and <ncf_node_number>

Step 1 . Accomplish_goal : I s sue context_command using
" add ncf " , and node ,
and <ncf_parent > , and n i l .

Step 2 . Accomplish_goal : Enter n c f _ d e s c r i p t i o n using
< n c f _ l a b e l > , and <ncf_re fe renc e > ,
and <ncf_node_number> .

Step 3 . Return_with_goal_accomplished .

In the method header, the working memory tags, which the method demands,
are listed. Because all working memory tags are global in scope, every method
has working memory tags identifiers with a unique prefix to make them pseudo
local. This is not ideal, because it raises working memory demand, but is the
only way to not get cluttered in complex models [Kieras 99].

3.4. GOMSL ANALYSIS OF YB-EDIT USE 47

The first step in the method is the call of a sub method to accomplish the issue
context command goal with the command name, the context type, and the con-
text as parameters. The nil parameter is an empty parameter, which is needed,
because the called method requires four parameters.

The second step calls the sub method to accomplish the enter ncf description
goal. After having issued the context command to add a ncf by accomplishing
the first step, one would now be presented with the parameter input window
by YB-Edit. The enter ncf description method is therefore provided with the
necessary parameters to make expedient input in this context.

The Input Dialogue Window of YB-Edit YB-Edit uses the same input dia-
logue window for all node parameter input, but there are subtle differences in
the interaction depending on the goal whose accomplishment evoked the win-
dow. These differences express in alternating input foci, changing preselection
in the input fields, and different commands to evoke the dialogue window.

Due to complexity of the required modelling and the recommended number
of steps per method [Kieras 99], there are now four different methods at the same
hierarchy level, that describe the different interactions with the input window.

Handling Operations with the List of Facts The List of Facts is displayed in
an external text editor, and the analyst switches back and forth between YB-Edit
and the text editor to determine facts or to alter the List of Facts. Remarkably,
none of the analyst used the system pasteboard to transmit information.

The method to determine a fact, for example, is represented by two program
changes and a dummy method:

Method_for_goal : Determine f a c t
Step 1 . Accomplish_goal : Change_to program using

" Edi tor " .
Step 2 . Verify " Find the f a c t t h a t i s causa l f a c t o r " .
Step 3 . Accomplish_goal : Change_to program using

"YB−Edit " .
Step 4 . Return_with_goal_accomplished .

The first step in this method calls a sub method that switches the working
environment to the text editor. The change to program method assumes the user
to point to the editor window and click it. Using the keyboard to switch to the
editor would consume almost the same time.

The dummy operator verify consumes a static amount of time. This is a men-
tal operator provided by GOMSL to indicate a complex psychological process
not further specified. In the determine fact method it is a placeholder for the
identification process of a causal factor.

Step three changes the working environment back to YB-Edit.

48 3. THE ANALYSIS OF YB-EDIT

Removing a Node To remove a node the analyst is required to detach its child
nodes first. After having done so, he can call the context menu command to
delete the node:

Method_for_goal : Remove node using <rm_label >
Step 1 . Look_for_object_whose Label i s <rm_label > and_store_under < t a r g e t > .
Step 2 . Decide :

I f Children of <t a r g e t > i s n i l , Then
Goto 7 ;

I f Children of <t a r g e t > i s " 1 " , Then
Goto 6 ;

I f Children of <t a r g e t > i s " 2 " , Then
Goto 5 ;

I f Children of <t a r g e t > i s " 3 " , Then
Goto 4 .

Step 3 . Accomplish_goal : Remove edge using
Child4 of <t a r g e t > , and <rm_label > .

Step 4 . Accomplish_goal : Remove edge using
Child3 of <t a r g e t > , and <rm_label > .

Step 5 . Accomplish_goal : Remove edge using
Child2 of <t a r g e t > , and <rm_label > .

Step 6 . Accomplish_goal : Remove edge using
Child1 of <t a r g e t > , and <rm_label > .

Step 7 . Accomplish_goal : I s sue context_command using
" delete_node " , and <rm_label > , and n i l , and n i l .

Step 8 . Return_with_goal_accomplished .

First the visual object with the label of the node to delete is looked for.
In the second step, the number of child nodes is determined — an attribute of

the visual object — and then the edges are removed by calling the remove edge
method in steps three to six. The remove edge method consists of the execution
of a context command.

In step seven the issue context command method is called to delete the node.

Inserting a node To insert a node between two nodes with a causal relation,
requires the analyst to restructure the graph by hand:

Method_for_goal : I n s e r t node using
<in_parent > , and < i n _ l a b e l > ,
and <in _ r e f e r en c e > , and <in_chi ld1 > ,
and <in_chi ld2 > , and <in_chi ld3 > ,
and <in_chi ld4 >

Step 1 . Accomplish_goal : Add ncf using
<in_parent > , and < i n _ l a b e l > ,
and <i n _ r e f er e n c e > , and n i l .

Step 2 . Accomplish_goal : Change parent using
<in_parent > , and < i n _ l a b e l > ,
and <in_chi ld1 > , and <in_chi ld2 > ,
and <in_chi ld3 > , and <in_chi ld4 > .

Step 3 . Return_with_goal_accomplished .

First an ncf is added to the former parent node of the existing nodes.
In the second step, the parent node for the given child nodes are changed by

calling the change parent method. The accomplishing of this method requires
the removal of the edges between the former parent node and the child nodes,

3.5. THE RESULTS 49

and the addition of the child nodes as necessary causal factors to the inserted
node.

Counting In the creation of a WB Graph there are actions, such as merge nodes
or split node, that require repetition depending on object properties such as the
number of child nodes or parent nodes. Since GOMSL has no operator to count
or loop, I hardcoded these functions to a degree of four nodes, what may better
represents human cognition, but resulted in — often unused — extra steps, as
can be seen in the remove node method.

Issuing a Command All commands except two — add an edge and change
source node of an edge — are invoked by selecting a contextual menu entry.
The analyst looks for the object representing the context, (right-) clicks it, is then
presented a menu, looks for the adequate menu entry, and clicks it. Browsing the
menu is possible, too, but is not modelled because it nearly consumes the same
amount of time. This is the method:

Method_for_goal : I s sue context_command using
<icc_command> , and < i c c _ c o n t e x t > ,
and < i c c _ l a b e l 1 > , and < i c c _ l a b e l 2 >

Step 1 . Decide :
I f < i c c _ c o n t e x t > i s canvas , Then

Accomplish_goal : C l i c k _ a t item using
n i l , and < i c c _ c o n t e x t > ;

I f < i c c _ c o n t e x t > i s edge , Then
Accomplish_goal : C l i c k _ a t edge using

< i c c _ l a b e l 1 > , and < i c c _ l a b e l 2 > ;
I f < i c c _ c o n t e x t > i s node , Then

Accomplish_goal : C l i c k _ a t item using
< i c c _ l a b e l 1 > , and < i c c _ c o n t e x t > .

Step 2 . Accomplish_goal : C l i c k _ a t item using
<icc_command> , and menu_entry .

Step 3 . Return_with_goal_accomplished .

First, the context type is determined to accomplish the corresponding method
to click at the object. The click at methods include the looking for an object of a
specific type equipped with specific type dependent attributes.

The next step invokes the method to accomplish clicking at a menu item with
a specific label.

3.5. The Results

3.5.1. Modelling with GOMSL

GOMSL offers no possibility to formulate counting or loops, what sometimes
complicated the modelling. A facility to formulate repetitive tasks that regards

50 3. THE ANALYSIS OF YB-EDIT

human cognition would help a lot to formulate complex tasks like those occur-
ring during a WB-Analysis.

The size and position of the visual objects can not be specified in GOMSL,
which uses a variant of Fitt’s Law. Pointing to an object therefore consumes
a static amount of time, what may have negative influence on pop-up menu
navigation time estimates.

The representation of the device does not change according to what is hap-
pening by task execution. The analyst must provide all states of the device that
occur during accomplishing the goals in advance. To make sure that nothing
wrong is detected by the simulated user, the objects often must be detected by
more attributes than in reality.

When models of alternate designs are made, the similar workarounds must be
used to ensure the comparability.

3.5.2. Using GLEAN3

When the model is processed with GLEAN3, it must first be loaded and then
compiled. If the model compiles, that does not necessarily mean that the model
is error free. To further debug the model, the compiled model is executed and the
log is thoroughly checked for inconsistencies, such as visual objects not found.
The learning time analysis can be done before the model is executed, but it is
safer to debug it first.

3.5.3. Learning Analysis

Figure 3.4 displays the results of the learning analysis. The model consists of
34 different methods with a total of 216 steps. Although I shared as many sub
methods as possible, there are a lot of specialised methods with many steps.
Only 6 of the 216 steps — 2.78 percent — are learnable.

As mentioned earlier, there are four different methods to deal with the node
or necessary causal factor description. The methods are so different from each
other, that nothing can be learned from the other methods.

The remove method is — apart from the selection rules called perform graph
actions — the method with the most steps, because removing a node in YB-Edit
requires manually removing all sub nodes.

The methods change parent, change child, add as parent, and add as child
are utility methods of the merge nodes, split node, and insert node methods and
basically deal with the inability of GOMSL to count or loop. The number of steps
is not dependent of the interface of YB-Edit.

3.5. THE RESULTS 51

Figure 3.4.: Learning analysis of YB-Edit use.

52 3. THE ANALYSIS OF YB-EDIT

3.5.4. Execution Times

The execution times are displayed in Figure 3.5. The table contains the number
of times each method was executed, the total time spent in a method, the average
time spent executing a method, and the percent of total execution time spent in
a method. The percentages do not sum up to 100 percent because the methods
are hierarchically structured.

Figure 3.5.: Execution times of YB-Edit.

The creation of the WB Graph assuming an expert user would take 704.95 sec-
onds with only a little cogitation and an instantaneous response by the system.
The create wb_graph method is the top most method and hence represents the
whole creation of the “Friendly Fire” WB Graph.

Apart from the selection rules in perform graph actions, the most time — 54.68
percent of total — was spent adding 18 necessary causal factors. The average

3.5. THE RESULTS 53

execution time of the method is 21.41 seconds, what is almost the average exe-
cution time of adding a new node or adding a new fact. Most of the time these
methods spend for entering the descriptions; remember that nobody used the
system pasteboard. Entering text makes up 40.78 percent of the total execution
time.

The program changes are noticeable, too. There are 38 of them, two for every
node in the graph, consuming 117.1 seconds, what is 16.61 percent of the total
execution time and 2.9 seconds less as it takes to determine a fact (120 seconds).

3.5.5. Visual Operators and Memory Demand

There is a number of 92 visual operations. If one bears in mind, that there is a
list with around 20 facts to discover and graph with the same amount of nodes,
this seems a lot to look at.

There were 81 working memory content replacements, and peak of four work-
ing memory contents stored at the same time.

3.5.6. Interaction with YB-Edit

3.5.6.1. Pop-up Menus

The pop-up menus are a form of indirect user engagement, which is not recom-
mended for direct manipulation interfaces. They are only a clickable represen-
tation of typed commands, where communication to the system occurs through
an invisible intermediary.

The issuing of a context command requires evoking a specialised method just
to execute a command. Most of the time further interaction is required to accom-
plish a task.

3.5.6.2. Two Basic Interaction Forms

YB-Edit utilises two basic interaction forms: the earlier mentioned contextual
pop-up menus and the drag and drop gesture, which is used for adding an edge
to determine an existing node as necessary causal fact of another existing node.

Although it is more intuitive in its use, it adds a second specialised method
that covers this gesture to the model.

3.5.6.3. The Input Dialogue Window

The input dialogue window is inconsistent in invocation and use. There are four
different ways to let the window pop up, which control the state of the window.
The window has four different modes without clear signs to detect them. It

54 3. THE ANALYSIS OF YB-EDIT

required a lot of GOMSL modelling work, which is an indication for need of
optimisation [Card 83, Kieras 97a, Kieras 99].

3.5.6.4. The External List of Facts

A large amount of time is consumed for operations that have to do with the List
of Facts. For every node that is added to the graph, the analyst switches over to
the editor, determines a causal factor, keeps it in mind, switches back to YB-Edit,
and after creating a node, reenters the information kept in mind. Only entering
the text, the analyst has previously entered in a text editor, consumes around
40 percent of the whole time required to build a WB Graph, and the program
switching consumes another 16 percent. The procedure requires the analyst to
use his memory as a buffer for the description of the facts. This and the retyping
are possible sources of error. Fixing this issue will halve the total execution time
and eliminate sources of error.

3.5.6.5. Errors

A user error might occur when a causal factor is added to the graph, which
is not present in the List of Facts at that time. After adding such factor to the
graph, the analyst is required to add it to the List of Facts, which includes giving
the fact an index number, and then adding this index number as reference to
the corresponding node description. The latter can be missed easily, since the
higher level goal — the addition of the node to the WB Graph — is already
accomplished, and the analyst therefore stops accomplishing related sub tasks.
In fact, this has happened during my observations. See node 1.1.1.1.1.1.2.2. in
the “Friendly Fire” WB Graph in Figure 1.2 and the entry missing at the end of
the corresponding List of Facts (“c. GPS coordinate representation”) in Figure
1.1, which are unchanged results of the observed analysis.

The analysis of YB-Edit use unveiled another possibility for user error. It oc-
curs when inserting a node between two nodes with a causal relation. After
having inserted the node and redirected the edge, the main goal is reached, but
WB-Edit requires the analyst to call the reindex function now, since the node in-
dex numbers got mixed up. See node 1.1.1.1.1.1.4.2 and node 1.1.1.1.1.1.4.1.1 in
Figure 1.2. Node 1.1.1.1.1.1.4.2 was added as a sibling node to node and hence
became its actual number. Afterwards, the edge between node 1.1.1.1.1.1.4.1.1
was changed to point to node 1.1.1.1.1.1.4.2. After a re-indexing of the graph the
nodes would have obtained their correct index, but this was obviously forgotten.

This kind of errors is referred to as problem of closure [Dix 98].

3.5. THE RESULTS 55

3.5.6.6. Removing a Node

The removal of a node that is not a leaf requires the detaching of the child nodes
by the user. This is a time consuming routine task which requires no decision
taking by the user.

3.5.6.7. Insertion of a Node

As the removal of a node, inserting a node between two existing nodes with a
causal relation requires a lot of manual operation, although it is a routine task,
when the two existing nodes are specified. As seen in section 3.5.6.5, this method
is a possible cause of error.

3.5.6.8. Single Object Manipulation

The context pop-up menus are evoked by right-clicking a screen object. This can
be the whole WB Graph represented by the canvas, a node, or an edge. Because
combination of several objects by selection is not possible, only attributes of a
single object can be manipulated.

56 3. THE ANALYSIS OF YB-EDIT

4. The New User Interface Design

4.1. Basic Concepts

4.1.1. Direct Manipulation

There must be only one basic interaction gesture for the manipulation of the WB
Graph to make the interface learnable with ease. This must be a gesture that al-
lows fast direct manipulation with user engagement. The drag and drop method
used by YB-Edit to establish causal relations is a very intuitive and fast mouse
interaction form, because it carries all necessary information in two pointing op-
erations, that correspond to the natural locus of interest of the user, and one press
and release of the mouse button.

To allow for interaction with multiple objects, a method to select several single
screen objects, even if they are non-adjacent is required.

4.1.2. Managing the Attributes

The textual input of node attributes should be consistent. Because there are only
few attributes that are set in the dialogue, the information of a selected node
can be displayed all the time without cluttering the screen. This allows for a
uniform input focus placement and preselection of text data. Furthermore the
user is provided all information in the same interaction frame and is supported
in familiarising with the user interface, since its layout does not change.

If zooming out the graph to gain overview, this is a possibility to gather node
detail information without having to zoom in again. It may be useful to display
further attributes of a node, such as its necessary causal factors or its effects, to
give more details and to allow for further textual input.

4.1.3. Incorporation of the List of Facts

Like Bernd Sieker encourages in [Sieker 04], the List of Facts should be incorpo-
rated by YB-Edit.

There must be at least the possibility to load, display, modify and save the
List of Facts with YB-Edit. The List of Facts contains the base information for
creating a WB Graph. The Analyst is required to work with these information

57

58 4. THE NEW USER INTERFACE DESIGN

throughout the whole creation of the graph and is sometimes even required to
make changes to it (see section 2.2). This does not necessarily mean that the List
of Facts must be created using YB-Edit, because there exist many tools that are
good at creating and dealing with indexed lists, but by integrating the List of
Facts all process relevant information is in one place and can be used as source
for drag and drop gestures.

Integrating the List of Facts bears several great advantages. A fact can be
determined without context switching to another program. The information is
directly usable without utilising working memory and the time consuming re-
entering of previously entered text. The facts can be added to the WB Graph
using drag and drop operations. Potentially required changes to the node de-
scription can be made afterwards. Furthermore the reference of a node to a fact
can be made automatically.

In a similar way, a missing fact can be added to the List of Facts without leav-
ing the program. If the analyst creates a node without corresponding fact, the
node description can be used to generate an entry in the List of Facts which can
be edited later. This is a way to gather a List of Facts, if the Why-Because List
was used at first to arrange the facts.

By integrating the List of Facts the user errors observed in YB-Edit’s use do
not occur any more.

It can be useful to highlight the referenced facts of a selected node in the List
of Facts, or to mark facts that are already used in the graph, but this will not be
discussed here.

4.1.4. Automation

The indexing of the graph should happen without the user initiating it. The
WB Graph nodes are indexed depending on their hierarchy level. Since user
interaction is not required the operation that can be automated completely.

The removal of the edges pointing from child nodes to a node that is to be
deleted and the routine tasks required to insert a node should be automated.
No decision by the user is required, so there is no need to burden him with this
work.

4.2. THE DESIGN 59

4.2. The Design

4.2.1. A GUI Sketch

Figure 4.1 shows a sketch of a new GUI design that supports the concepts stated
in section 4.1. Please note, that it is not meant to be a suggestion for the graphic
design of the interface.

Figure 4.1.: Sketch of a new GUI design

The main part of the GUI consists of an area where the List of Facts is displayed
on the left and the WB Graph drawing canvas on the right. Direct below the
graph drawing canvas there are three panels, to which objects can be dragged.
They are: a split panel, a merge panel, and a trash can.

Below are two dialogues that display the attributes of a selected fact, or node,
respectively. There are two separate dialogues to avoid different modes of oper-
ation of the interface elements.

Selection of single objects — facts, nodes, and edges — is done by clicking.
Multiple objects can be selected via rubber band selection or by shift clicking,
if the nodes are non-adjacent. A single click on the graph canvas or the List of
Facts area deselects anything and empties the dialogues. The keyboard focus

60 4. THE NEW USER INTERFACE DESIGN

is the description field of the node or fact dialogue, corresponding to what was
clicked.

If, for example, the user selects node 1, the node attribute dialogue displays
the description “Accident: 3 SF-Soldiers died and 20 wounded”, the referenced
facts “1, 2”, and the cause “Soldiers hit by 2k-pound satellite guided bomb”. The
description field is preselected. To protect the user’s work1, the preselected text
must be explicitly erased by hitting the delete key. Any other key will deselect
the text and place the insertion mark at the end of the text. This adds only one
keyboard hit to the interaction, but there is no risk of accidentally erasing valu-
able information.

The position and size of the elements is arbitrary at this time, since they can
not defined in GOMSL and hence have no influence on the results.

4.2.2. The Interaction

The high level goals determined in section 2.3, the tasks concerning the List of
Facts stated in section 3.4.1.1, and the concepts developed in section 4.1 form the
basis for the interaction design.

4.2.2.1. Accomplishing of the High Level Goals

Add a Node There are two ways to add a node or a top node to the graph,
depending on whether a corresponding fact is in the List of Facts or not. In
the first case, the fact is dragged to the canvas and dropped. In the latter, the
graph canvas is clicked, to deselect anything and place the text cursor in the
node description field. Then the text is entered using the keyboard. After hitting
the return key the new node is placed on the canvas, and a corresponding fact
entry in the List of Facts is created. The new node is the active selection.

Add a Necessary Causal Factor To add a necessary causal factor to the graph,
the corresponding fact is dragged from the list of facts to the chosen parent node.
The new node is the active selection.

A second possibility to add a necessary causal factor is to add a new node to
the graph first, and add an edge between the new node and the chosen parent
node then. This method is a method to chose, if there is no corresponding fact in
the List of Facts.

1To protect the user’s work was one basic principle of the Macintosh Project, see [Raskin 00] for
some information.

4.2. THE DESIGN 61

Insert a Node To add a node between two nodes that are connected by an
edge, the corresponding fact is dragged to the edge between the nodes and
dropped. The so inserted node is the active selection.

Again, there is the possibility to first create a node, and then drag it to the
edge.

Remove a Node To delete a node it is dragged to the trash can.

Change an Edge To change the source or target of an edge, the head or the
tail of the edge is dragged to the desired node and dropped. To create a new
edge between to nodes, the node that represents the necessary causal factor is
dragged to the node that represents the effect and dropped. Edges are deleted
by dragging them to the trash can.

Change a Node Description To change a node description, the node is se-
lected at first. Depending on whether a completely new description should be
entered, or an existing description should be complemented, the delete key is hit
before typing text. When finished, the return key is hit. The node is still selected
and the whole text is preselected.

Merge Nodes To merge nodes, they are selected, dragged to the merge panel,
and dropped. The result node is the active selection and the keyboard focus is
in the node description field. The nodes description is entered by typing the text
and hitting the return key. The edges and references are carried over to the result
node. If this is not the desired state, this must be changed by hand.

Split Nodes To split a node, it is dragged to the split panel and dropped. A
new node with the same parent node as the original node appears. The new
node is the active selection and the keyboard focus is the node description field.
The node’s description is entered by typing the text and hitting the return key.

This is a horizontal split. A vertical split of could be realised in the same way,
but is already covered by the method to insert a node.

Operations with the List of Facts

Determining a Fact Look at the List of Facts area.

62 4. THE NEW USER INTERFACE DESIGN

Adding a Fact At first, by clicking on an empty part of the List of Facts area,
any selected object is deselected and the the keyboard input focus is placed in the
fact description field. The text is entered by typing it and hitting the return key
when having finished. A new fact entry is created, which is the active selection.
The keyboard input focus is still the fact description field, but now the previously
entered text is preselected.

Removing a Fact To remove a fact from the List of Facts it is dragged to the
trash can.

4.2.3. Comments

The new interface supports both the List of Facts approach, and the Why-Because
List approach, while it is optimised for the first. When the Why-Because ap-
proach is used, the analyst receives a List of Facts with no extra costs.

The description of integration of the List of Facts is incomplete, and sup-
ports only the basic operations required for the accomplishing the creation of
the “Friendly Fire” WB Graph.

4.3. GOMSL Analysis of the New Interface Design
Use

4.3.1. The Model

The model introduced here represents the use of a YB-Edit that integrates parts
of the new interaction design to accomplish the same task as in section 3.4. The
task represents the actions required to create the “Friendly Fire” WB Graph in
Figure 1.2. The device representation and the methods to accomplish the goals
are adapted to represent the new user interface design. The complete model is
listed in Appendix C.

4.3.1.1. The Tasks

The Tasks to accomplish are nearly the same as in section 3.4.2.1, except that
tasks that deal with the references to the List of Facts and the re-indexing of the
WB Graph are no longer required. Therefore there are only 39 instead of 41 tasks
now.

4.3. GOMSL ANALYSIS OF THE NEW INTERFACE DESIGN USE 63

4.3.1.2. The Device

The Graphical User Interface The graphical user interface is represented as
described in section 4.2.1 by visual objects. In the main these are visual objects
representing the attribute dialogue input fields like this:

Visual_object : F a c t _ d e s c r i p t i o n
Type i s i n p u t _ f i e l d .
Label i s " Fact Descr ip t ion " .

The split and the merge panel, and the trash can are modelled in a similar way:
Visual_object : S p l i t

Type i s f i e l d .
Label i s " S p l i t " .

Since all the other commands are realised through drag and drop operations
with elements that represent data, no further graphical user interface compo-
nents are required.

The WB Graph The WB-graph description is the same as the one in the GOMSL
model of YB-Edit. The split and the merge methods create a new node without
description, which had to be added to the graph model:

Visual_object : New_node
Type i s node .
Label i s "New Node" .

The label of the object is not empty, as it would be in reality, but “New Node”,
to make sure it is detectable by GOMSL’s “look at” function that cognises visual
objects.

The List of Facts The interface displays the List of Facts and the fact entries
are source objects of the drag and drop gesture, so there must be visual objects
to represent the single facts:

Visual_object : Fact11
Type i s f a c t .
Label i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Number i s " 11 " .

4.3.1.3. The Selection Rules

The selection rules had to be modified, since the methods to achieve the high
level goals have changed. E.g. to add a new node or to add a new necessary
causal factor the same method is selected, and every time a label or description
is changed the change attribute method is called. Furthermore there are more
methods that deal with the integrated List of Facts and the rule for re-indexing
the graph is removed, since this is not required anymore.

64 4. THE NEW USER INTERFACE DESIGN

4.3.1.4. The Methods

Everything is drag and drop now. The method to add a node or necessary causal
factor looks like this:

Method_for_goal : Add node using
<an_fact > , <an_ptype > , and <an_parent >

Step 1 . Accomplish_goal : Drag item using
f a c t , and <an_fact > , and n i l ,
and <an_ptype > , and <an_parent > , and n i l .

Step 2 . Return_with_goal_accomplished .

In the first step a method is called that accomplishes dragging the fact deter-
mined in the previous task to a target . If the type of the target is the canvas, a
new node is produced. If it is a node, the result is a necessary causal factor. The
methods remove node, add edge, alter edge, remove node, and remove fact are
accomplished in a very similar way.

Text Input If required, the textual input is accomplished with the change at-
tribute method:

Method_for_goal : Change a t t r i b u t e using
<ct_type > , and < c t _ a t t r i b u t e > , and <ct_a_or_x > ,
and < c t _ o r i g i n a l > , and <ct_new>

Step 1 . Accomplish_goal : C l i c k _ a t item using
<ct_type > , and < c t _ o r i g i n a l > , and n i l .

Step 2 . Decide :
I f < c t _ a t t r i b u t e > i s_not " Descr ipt ion " , Then

Accomplish_goal : C l i c k _ a t item using
i n p u t _ f i e l d , and < c t _ a t t r i b u t e > , and n i l .

Step 3 . Decide :
I f <ct_a_or_x > i s a l t e r , Then

Keystroke DEL .
Step 4 . Type_in <ct_new_label > .
Step 5 . Keystroke CR .
Step 6 . Return_with_goal_accomplished .

In the first step the target of the attribute change is selected by clicking on
it. In the next step is decided, if the selection of an input field is required. If
anything else than the description is to be changed, the corresponding input
field is clicked. In step three, the delete key is typed, if the complete text is to be
replaced. The text is typed in step four, follow by a return key press in step five.

There is textual input in other methods, too, e.g. in the add fact method:
Method_for_goal : Add f a c t using

< a f _ d e s c r i p t i o n >
Step 1 . Accomplish_goal : C l i c k _ a t item using l i s t , and " L i s t of Fac t s " , n i l .
Step 2 . Type_in < a f _ d e s c r i p t i o n > .
Step 3 . Keystroke CR .
Step 4 . Return_with_goal_accomplished .

Since the interface is designed in such a way that there is no need to specify
an input field in this situation, the text input is handled in two steps, which are
included in place (steps 2. and 3.).

4.4. RESULTS 65

Handling Operations with the List of Facts Since the List of Facts is now dis-
played in the same program window as the rest, there is no need to change to
another program window anymore. The determine fact method therefore con-
sists of only two steps:

Method_for_goal : Determine f a c t
Step 1 . Verify " Find the f a c t t h a t i s causa l f a c t o r " .
Step 2 . Return_with_goal_accomplished .

Removing a Node The remove node method consists only of one step, because
there is no menu navigation and detaching of child nodes necessary anymore:

Method_for_goal : Remove node using
<rm_label >

Step 1 . Accomplish_goal : Drag item using
node , and <rm_label > , and n i l ,
and t r a s h , and " Trash " , and n i l .

Step 2 . Return_with_goal_accomplished .

4.4. Results

4.4.1. Learning Analysis

The results of the learning analysis are displayed in Figure 4.2. Because there
are less specialised methods, the model consists of only 22 methods with a total
of 140 steps. Half of the methods consist of four or less steps and just form
a framework for a drag and drop operation. The reuse of the drag and drop
method is not regarded by the learning analysis of GLEAN3, because of there
are to much parameter that are different when it is called. Only the remove fact
and the remove node have enough similarities that there is learnability. They
consist solely of one drag and drop operation with difference in one parameter.
Seven of the 140 steps can be learned from other methods. That is five percent of
total.

As in the model of YB-Edit use, the methods change parent, change child, add
parent, and add child are utility methods that deal with the inability of GOMSL
to handle counting or loops.

4.4.2. Execution Times

In Figure 4.3 the execution times are displayed. The creation of the WB Graph
took now 236.55 seconds.

46.76 percent of the time, the user drags something. The average execution
time of the drag item method is 5.53 seconds. Adding a node makes up 42.91

66 4. THE NEW USER INTERFACE DESIGN

Figure 4.2.: Learning analysis of the new interface design.

Figure 4.3.: Execution times of the new interface design.

4.4. RESULTS 67

percent of the total time, and the average execution time of the method is with
5.64 seconds only 0.11 seconds higher as the drag items average execution time.

The three missing facts were added not by using the side effect of adding a
node without corresponding fact, but by adding the facts first to the List of Facts,
what takes 13.5 seconds on average. This is a long time compared to the other
methods, what is caused by the typing of the description. Determining a fact
now only takes 1.3 seconds on average.

The look for item method is a sub method of the drag item method. 24.54 per-
cent of the whole execution time, the user is looking for what to drag and where
to drag. The change parent method was called from the insert fact method, but
had nothing to accomplish.

The perform graph actions method was called only 39 times. This means, there
were only 39 tasks to accomplish.

4.4.3. Visual Operators and Memory Demand

The number of visual operations during the creation of the “Friendly Fire” WB
Graph is 43. These are made up of 19 visual operations to look at the 19 facts
in the List of Facts and one to look up the canvas to add the top node to the
graph, 17 operations to look at nodes to add the necessary causal factors to the
graph, and one to look at an edge to insert a node between two nodes. The
remaining five visual operations are required to look at the source and target
node for adding the edge representing a causal relation between them, and to
look at the List of Facts for the deselection required ahead of the addition of the
three missing facts.

There were 97 working memory content replacements, and peak of three work-
ing memory contents stored at the same time.

68 4. THE NEW USER INTERFACE DESIGN

5. Comparison

5.1. Learnability

In the model of YB-Edit use the methods to achieve different high level goals
are very specialised. Therefore a large amount of different sub methods is called
by these high level methods. In contrast, the methods in the model of the new
interface design use are mostly frameworks to provide a called drag and drop
method with necessary parameters. In most cases this is enough to accomplish
a high level goal. In some cases, such as adding a fact, providing additional
information to the system is inevitable, what requires further operations to get
executed. The amount of differing parameters that are passed to the drag item
method from the high level methods is to high to satisfy the learnability defini-
tions of GLEAN3 [Kieras 99]. The number of learnable steps is nearly as low as
that of the model of YB-Edit use.

The model of YB-Edit use consists of 34 methods composed of 6.35 steps on av-
erage. Only 6 steps of the 216 steps representing the whole model are learnable.
The new interface design use model consists of 22 methods with 6.36 steps on
average, and 7 steps of the total 140 steps are learnable. If the methods required
to formulate the framework of the models and interface independent tasks com-
mon to both models were not taken in account, the results would have become
even more evident (see the tables in Figure 3.4 and 4.2).

5.2. Execution Times

The total execution time of new interface design use model is 2.98 times lower
than that of the YB-Edit use model. Basically, this is due to the fact, that the user
is not required to re-enter the fact descriptions anymore when creating a node.
Therefore the average execution time of the add node method, for example, was
shortened from 21.41 seconds to 5.82 seconds. The difference is 0.18 seconds
more than the execution time of the enter ncf description method in the YB-Edit
model.

The average execution time of determine fact method of the YB-Edit use model
is 7.5 seconds. With the new design, the time is reduced to 1.3 seconds due to
the fact that no more program changes are required any more.

69

70 5. COMPARISON

The time to insert a node was reduced from 30.45 seconds in the YB-Edit use
model to 5.7 seconds with the new interface design use model. This is due to
the fact, that the new design provides a drag and drop operation for inserting
a node between two nodes with a direct causal relation, while YB-Edit requires
several other high level goal methods to be accomplished to get the task done.

On average the drag item method of the new interface design is only 0.138
seconds faster accomplished than the issue context command method.

To build the WB Graph with YB-Edit, 87 mouse click and 2 drag and drop
operations are required. The creation of one node requires 4.53 mouse clicks on
average. The new design required only three mouse clicks, but 20 drag and drop
operations to build the WB Graph. This is 1.05 drag and drop operations per
node.

The average execution times of the drag item and the click item method of new
interface design use model are slightly faster than those in YB-Edit use model,
what should not be the case.

5.3. The Models

In the new interface model most of the high level tasks are accomplished by
evoking the drag item method. The mouse click method is required to deselect
something, which only occurs if adding new facts or nodes to the List of Facts
or WB Graph. When working with multiple objects at once, the click method is
required to select non adjacent nodes.

The YB-Edit use model requires accomplishing the issue context command
method with different context sensitive commands for resembling operations,
and a drag and drop method to initiate the accomplishing of high level tasks.
These methods can only be applied to one object at the same time.

With the new interface design attribute manipulation is uniformly handled
via two dedicated dialogues, which are both always visible. The use of the time
consuming type in operators was reduced to situations where completely new
information must be entered. YB-Edit interface provides four slightly different
pop up dialogue windows to change the node descriptions and therefore four
different methods to deal with them. The List of Facts is handled by an external
editor. This causes several specialised methods to change the nodes attributes,
extra methods to deal with the editor, and often called methods for typing in
text, that is already in digital form.

The automation of tasks that required no user decision simplifies the methods
to remove a node, to insert a node, and to reindex the graph. The method for the
latter is even non-existent in the new model. Inserting a node requires accom-
plishing the add ncf, add edge, and delete edge method if using YB-Edit. The
new interface requires just accomplishing a drag item method to drag the fact

5.4. RESUME 71

to the edge between the nodes, which is a non-ambiguous operation which pro-
vides all necessary information to the program to change the data accordingly.
The remove node method of the new interface requires no longer the deletion of
the edges to sub nodes of the node to delete. This can save a lot of extra work,
depending on the prior importance of the node.

The management of the references to the List of Facts entries presumed by
the new interface design avoids the occurrence of the observed user errors. The
reference is determined indirectly by the drag and drop method called by the
add node and insert node method.

YB-Edit requires the user to look at a lot of things. For building the WB Graph
consisting of 19 nodes 92 visual operations are required. The new interface de-
sign requires 43 visual operations, what is appropriate if considered that there
were three facts to add to the List of Facts and one extra edge to insert into the
Graph. The overhead of visual operations in YB-Edit is caused by twice call-
ing the program change method per List of Facts operation, which includes one
visual operator to look at the program window to click at, and the interaction
overhead caused by the non-automation of some tasks.

The new design use model has with 97 working memory content replacements
more different things to bear in mind over all than the model of YB-Edit use with
81 working memory replacements. The higher amount of memory replacements
is caused by introducing the entries of the List of Facts as objects to act with,
what causes more pseudoparameter passes per method in the model of the new
design.

The peak of working memory contents, the user has to keep in mind is three
with the new design, and four with YB-Edit.

5.4. Resume

The pure execution time for accomplishing the task of creating the “Friendly
Fire” WB Graph is nearly three times lower with the new interface design.

The new interface design has one basic gesture which is sufficient to accom-
plish most of the high level goals. This way, the user is provided an easy to learn
interface, which supports fast familiarisation.

The improvement through the drag and drop method is not a lower execu-
tion time of the method compared to the issue context command method in the
model of YB-Edit use, but the effect for the straightforwardness of the interac-
tion. The drag and drop gesture does not require the user to turn away from his
natural locus of interest: when concentrated on the List of Facts to find a fact,
the user can directly pick the one he finds and can directly search for the place
to add it to the WB Graph with the fact at his hand. When the adequate node is
found, the fact is simply dropped on it. This is done without having to explicitly

72 5. COMPARISON

evoke a command at first. An indicator for this is the reduced amount of visual
operations. The integrated List of Facts supports the drag and drop gesture by
providing the source objects. Changing back and forth to another program and
remembering fact descriptions in not needed anymore.

The input dialogue windows in the new interface design are rarely required,
but when, they behave in the same way in every situation. This expresses in the
fact, that only one method was needed to specify the text input for the nodes and
the facts. In some cases it is not even used, because the input interaction is re-
duced to pure typing of text without extra interaction. Therefore the accomplish-
ing of task used for the analysis did not require the method to get accomplished
once.

The two observed errors made during the creation of the “Friendly Fire” WB
Graph can not be made with the new interface design anymore. The integra-
tion of the List of Facts and the automated indexing of the graph eliminated the
problems of closure.

The new design requires the user to keep more different parameters for inter-
action in working memory, but only three at the same time.

6. Conclusion

6.1. Hierarchical Task Analysis

The Hierarchical Task Analysis very useful for gaining an overview of the pro-
cedure of a WBA and inevitable to determine the the high level goals for the
analysis of YB-Edit use.

It requires some experience to carry out structured interviews. One tends to
collect to much detail while acquiring high level tasks. The result is a flat list
of sub operations, then. The record sheet I designed is very useful, although
it provides to much space for one task description, and should be adapted to
hinder the analyst from collecting too much detail on the same level. Very useful
is the tool, that converts the textual representation of the hierarchy to a visual
graph representation using a graph layout tool. This allowed me to concentrate
on the subject matter and get visual representations in short time.

The whole diagram of performing a WBA is to large to include it in this theses
— it is 2.8 meters wide, so I split it up into sub diagrams. Although the HTA
does not go down to basic operations, the corresponding diagram became large
very fast. This is caused by the characteristics of the presentation form, and the
automatic layout, which tries to mimic the HTA diagram look by using a tree
layout. To my knowledge, the fast growth of hierarchical task diagrams is not
mentioned in literature.

I doubt that any process of doing a WBA is completely described by the dia-
grams in section 2.2. I only talked to a limited amount of interviewees, which
all work in the same group, what sure had an influence on the outcomes of the
analysis. Interviewing more Why-Because analysts will give a more complete
picture. Nevertheless the results of the analysis were usable for the analysis of
the use of YB-Edit.

6.2. GOMSL and GLEAN3

The GOMS Language was sufficient to model the complex task of using YB-Edit
to create a complete WB Graph. In contrast to some other GOMS variants it is
very well documented [Kieras 99]. With the detailed execution time, model and
method complexity delivered by GLEAN3, predictions of the use of a planned

73

74 6. CONCLUSION

or existent interface design can be made on the basis of the GOMSL model.
Like with HTA, the experience of the analyst influences the quality of the mod-

els and therefore the results of the analysis. Although the modelling process is
described, there are no strict if. . . then rules that guide an analyst. The drag item
and click at methods in the models of the use of YB-Edit and the new interface
design should have the same execution times, but in fact have not. These slight
average execution speed advantages in the order of magnitude of the tenth of
a second might be due to a look at item method which the drag item and click
item methods call. It was added to the new design’s model to handle looking at
different kinds of objects, what is required to deal with the included the List of
Facts

Of most value is the development of the single methods to accomplish the
goals. During the formulation of the smallest elements of an interaction even
small inconsistencies stand out. The execution times and learning analysis deliv-
ered by GLEAN3 then provide the values that document the observations made
during the modelling process.

I noticed four deficiencies while working with GOMSL and GLEAN3. First,
there is no way to count and to formulate parameter dependent loops in GOMSL.
This makes the formulation of some methods complicated. The remove node
method in the model of the use of YB-Edit, for example, requires the accomplish-
ing of a remove edge method for all the edges to the child nodes of the node to
delete. In a higher programming language this is straightforward to formulate
with some sort of loop statement, while GLEAN requires to explicitly formulate
a rule for every possible case. I limited the amount of allowed child nodes and
parent nodes to four (see Appendix B and Appendix C).

The second deficiency is the impossibility to specify size and position of visual
objects in the device description and is commented in [Kieras 99]. On one hand,
this makes the description of the device more easy, especially in cases where such
informations are not available (e.g. a new design), but on the other hand the cal-
culations done by GLEAN3 using Fitt’s Law provide only flat rounding values.
A good compromise might have been to use default values for the calculations
in case none are specified in the visual object description. This would have made
the comparison of the drag and drop and the contextual pop-up menu approach
a little more realistic.

The third deficiency concerns the visual objects, too. There is no way to control
from within the model, if a visual object is visible or not. This means that the
methods that deal with visual objects must be designed in such a way, that they
do not look at objects that are not present at the current state of the interface.
This makes those methods more complicated and therefore unrealistic, and the
visual objects need have more attributes than necessary. In the new interface
design’s model, for example, the drag and drop method called by the add node
method found the node it should add to the graph instead of the fact with the

6.3. YB-EDIT USE 75

same description and made it the object of the drag and drop operation. I had
to specify the type of visual object to make the fact and the — in reality not yet
present — node distinguishable in the model.

The last shortcoming I discovered is a problem with the so called pseudopa-
rameters that hand through the necessary working memory contents to sub meth-
ods. These are all global “variables”, what allowed some sub methods to over-
write working memory contents used by higher level methods, what had in-
fluence on the accomplishing of these higher level methods. I made the pseu-
doparameters local by using unique names for all pseudoparameters in every
method. This raised the working memory demand of the model, but the mem-
ory model used by GLEAN3 is not meant to give a realistic picture of human
brain functions anyway [Kieras 99] (see [Schulmeister 97, Kandel 00] for some
details on brain functions or memory use). Since I have done so in both models,
the comparability of models should be preserved.

6.3. YB-Edit Use

The analysis of YB-Edit use showed several areas of possible optimisation, which
were used as basis for the new design. Furthermore the design of the new in-
terface was directly based on the high level goals determined by the hierarchical
task analysis of the process of doing a WBA, what guaranteed that the interface
suits to the task.

The new interface design speeds the interaction up by factor of three, disbur-
dens the user in several areas, and avoids two possible causes for problems of
closure. This was achieved by extending the functionality of YB-Edit, optimising
the use of gestures, and adapting the graphical user interface elements.

Since the analysis of YB-Edit use was designed to address the manipulation
of a WB Graph, two aspects of the new interface design could not be further
analysed: the manipulation of multiple objects at once and the manipulation of
the List of Facts. There are some operations that could leave the List of Facts in
an inconsistent state. E.g. the removing of a fact can cause a node to have no
reference to the List of Facts any more, which is not desired.

6.4. Outlook

During its evolution CI-Edit, and later YB-Edit, was primarily optimised for
functionality and stability, what is not rather astonishing when concerning the
field of use of the program: system safety and security. Several interface incon-
sistencies probably have been caused by the integration of new required func-
tions to the program. The process of doing a WBA was not analysed until now,

76 6. CONCLUSION

what made it difficult to adapt a software tool to the process. Above all the
library used in YB-Edit for displaying the graph is — while producing good
looking graphs — limited to some basic interaction gestures.

By integrating the new design in YB-Edit, the usability of the program will be
greatly enhanced, and its use will become more safe. The advantages of the new
interface design outweigh the work required to integrate the interface design.
This is not a simple task, since not only a complete reimplementation of the
graphical user interface is required, but also the extension of the functionality of
YB-Edit.

Before this can be done, the manipulation of the List of Facts and the multiple
object manipulation need further investigation and must be specified to make
sure that they are no source of inconsistency or possible cause of error. To exam-
ine the methods of the new interface design not used in the “Friendly Fire” task,
the creation of other WB Graphs can be observed to specify a realistic list of task
instances. The existing models can be extended to make further investigation
possible.

Interviews with external analysts that use WBA are needed to make sure that
the process of doing a WBA is described completely in section 2.2.

The information obtained by the hierarchical task analysis of the WBA pro-
cess can be used as basis for writing a documentation of performing a WBA. The
models of YB-Edit and the new interface design use deliver valuable informa-
tion for a user manual. In combination this yields the groundwork of a how-to
manual for practical application of the WBA method.

A. HTA Record Sheet

Figure A.1.: The HTA record sheet.

77

78 A. HTA RECORD SHEET

B. GOMSL Model of YB-Edit

Define_model : " yb−e d i t use GPS Friendly F i r e "
Star t ing_goal i s Create wb_graph .

/ /
∗∗∗

5 / / Assumptions :
/ / − a L i s t o f F a c t s e x i s t s
/ / − yb−e d i t i s a l l r e a d y running , p r e s e n t i n g a new empty document
/ / − an o r d i n a r y t e x t e d i t o r i s r e a d y and d i s p l a y i n g t h e L i s t o f F a c t s
/ / − t h e canvas ’ s s i z e i s b i g enough t o d i s p l a y t h e whole graph :−)

10 / / − nodes have no more than f o u r c h i l d and f o u r p a r e n t nodes (t h i s must a l s o
/ / t r u e f o r t h e r e s u l t nodes o f merge o p e r a t i o n s !)
/ /

∗∗∗

/ /
∗∗∗

15 / / The Tasks
/ / a l i s t o f t a s k i t e m s
/ /

∗∗∗

Task_item : Task1
20 Name i s Task1 .

Type i s determine_fac t .
Next i s Task2 .

Task_item : Task2
25 Name i s Task2 .

Type i s add_new_node .
Label i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Node_number i s " 1 " .
Reference i s " (1+2) " .

30 Next i s Task3 .

Task_item : Task3
Name i s Task3 .
Type i s determine_fac t .

35 Next i s Task4 .

Task_item : Task4
Name i s Task4 .
Type i s add_ncf .

40 Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Reference i s " (3) " .
Parent i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Next i s Task5 .

45 Task_item : Task5

79

80 B. GOMSL MODEL OF YB-EDIT

Name i s Task5 .
Type i s determine_fac t .
Next i s Task6 .

50 Task_item : Task6
Name i s Task6 .
Type i s add_ncf .
Label i s "B−52 targ e te d SF−S o l d i e r s p o s i t i o n " .
Reference i s " (1 7) " .

55 Parent i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Next i s Task7 .

Task_item : Task7
Name i s Task7 .

60 Type i s determine_fac t .
Next i s Task8 .

Task_item : Task8
Name i s Task8 .

65 Type i s add_ncf .
Label i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Reference i s " (1 6) " .
Parent i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .
Next i s Task9 .

70

Task_item : Task9
Name i s Task9 .
Type i s determine_fac t .
Next i s Task10 .

75

Task_item : Task10
Name i s Task10 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

80 Reference i s " (1 5) " .
Parent i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Next i s Task11 .

Task_item : Task11
85 Name i s Task11 .

Type i s determine_fac t .
Next i s Task12 .

Task_item : Task12
90 Name i s Task12 .

Type i s add_ncf .
Label i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Reference i s " (1 4) " .
Parent i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

95 Next i s Task13 .

Task_item : Task13
Name i s Task13 .
Type i s determine_fac t .

100 Next i s Task14 .

Task_item : Task14
Name i s Task14 .
Type i s add_ncf .

105 Label i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Reference i s " (1 3) " .
Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task15 .

81

110 Task_item : Task15
Name i s Task15 .
Type i s determine_fac t .
Next i s Task16 .

115 Task_item : Task16
Name i s Task16 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Reference i s " (1 2) " .

120 Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task17 .

Task_item : Task17
Name i s Task17 .

125 Type i s determine_fac t .
Next i s Task18 .

Task_item : Task18
Name i s Task18 .

130 Type i s add_ncf .
Label i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Reference i s " (1 1) " .
Parent i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Next i s Task19 .

135

Task_item : Task19
Name i s Task19 .
Type i s determine_fac t .
Next i s Task20 .

140

Task_item : Task20
Name i s Task20 .
Type i s add_ncf .
Label i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

145 Reference i s " (1 0) " .
Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task21 .

Task_item : Task21
150 Name i s Task21 .

Type i s determine_fac t .
Next i s Task22 .

Task_item : Task22
155 Name i s Task22 .

Type i s add_ncf .
Label i s " SF−S o l d i e r s changed b a t t e r i e s " .
Reference i s " (9) " .
Parent i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

160 Next i s Task23 .

Task_item : Task23
Name i s Task23 .
Type i s determine_fac t .

165 Next i s Task24 .

Task_item : Task24
Name i s Task24 .

82 B. GOMSL MODEL OF YB-EDIT

Type i s add_ncf .
170 Label i s " B a t t e r y of GPS r e c e i v e r died " .

Reference i s " (8) " .
Parent i s " SF−S o l d i e r s changed b a t t e r i e s " .
Next i s Task25 .

175 Task_item : Task25
Name i s Task25 .
Type i s determine_fac t .
Next i s Task26 .

180 Task_item : Task26
Name i s Task26 .
Type i s add_ncf .
Label i s " F/A−18 s u c c e s s f u l l y tar ge t e d Tal iban Outpost " .
Reference i s " (7) " .

185 Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task27 .

Task_item : Task27
Name i s Task27 .

190 Type i s determine_fac t .
Next i s Task28 .

Task_item : Task28
Name i s Task28 .

195 Type i s add_ncf .
Label i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Reference i s " (6) " .
Parent i s " F/A−18 s u c c e s s f u l l y tar g e t ed Tal iban Outpost " .
Next i s Task29 .

200

Task_item : Task29
Name i s Task29 .
Type i s determine_fac t .
Next i s Task30 .

205

Task_item : Task30
Name i s Task30 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
210 Reference i s " (4) " .

Parent i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Next i s Task31 .

Task_item : Task31
215 Name i s Task31 .

Type i s determine_fac t .
Next i s Task32 .

Task_item : Task32
220 Name i s Task32 .

Type i s i n s e r t _ n c f .
Label i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Reference i s " (5) " .
Parent i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

225 Child1 i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g
device " .

Next i s Task33 .

/ / r e i n d e x i n g i s r e q u i r e d now , but was f o r g o t t e n !

83

230 Task_item : Task33
Name i s Task33 .
Type i s add_ncf .
Label i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Parent i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

235 Next i s Task34 .

Task_item : Task34
Name i s Task34 .
Type i s add_fact .

240 Descr ipt ion i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Next i s Task35 .

Task_item : Task35
Name i s Task35 .

245 Type i s extend_node_descr ipt ion .
Label i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Extension i s " (a) " .
Next i s Task36 .

250 Task_item : Task36
Name i s Task36 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Parent i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

255 Next i s Task37 .

Task_item : Task37
Name i s Task37 .
Type i s add_fact .

260 Descr ipt ion i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Next i s Task38 .

Task_item : Task38
Name i s Task38 .

265 Type i s extend_node_descr ipt ion .
Label i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Extension i s " (b) " .
Next i s Task39 .

270 Task_item : Task39
Name i s Task39 .
Type i s add_edge .
Source i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Target i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
275 Next i s Task40 .

Task_item : Task40
Name i s Task40 .
Type i s add_ncf .

280 Label i s "GPS coordinate r e p r e s e n t a t i o n " .
Parent i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Next i s Task41 .

Task_item : Task41
285 Name i s Task41 .

Type i s add_fact .
Descr ipt ion i s "GPS coordinate r e p r e s e n t a t i o n " .
Next i s None .

290 / / add ing t h e r e f e r e n c e t o t h e node d e s c r i p t i o n was f o r g o t t e n

84 B. GOMSL MODEL OF YB-EDIT

/ /
∗∗∗

/ / V i s u a l O b j e c t s
/ /

∗∗∗

295

/ / ∗
∗

/ / The Program Windows
/ / ∗

∗

300 Visual_object : Ybedit_program_window
Type i s window .
Label i s "YB−Edit " .

Visual_object : Editor_program_window
305 Type i s window .

Label i s " Edi tor " .

/ / ∗
∗

/ / The E d i t o r s i n t e r f a c e e l e m e n t s
310 / / ∗

∗

Visual_object : I n s e r t i o n _ p o i n t
Type i s i n s e r t i o n _ p o i n t .

315 / / ∗
∗

/ / YB−E d i t s i n t e r f a c e e l e m e n t s
/ / ∗

∗

Visual_object : Canvas
320 Type i s canvas .

Visual_object : Add_new_node
Type i s menu_entry .
Label i s " add new node " .

325

Visual_object : Reindex_whole_graph
Type i s menu_entry .
Label i s " reindex whole graph " .

330 Visual_object : Rerender_graph
Type i s menu_entry .
Label i s " rerender graph " .

Visual_object : Delete_edge
335 Type i s menu_entry .

Label i s " d e l e t e edge " .

Visual_object : Edit_edge
Type i s menu_entry .

340 Label i s " e d i t edge " .

Visual_object : Reverse_di rec t ion
Type i s menu_entry .

85

Label i s " reverse d i r e c t i o n " .
345

Visual_object : Add_ncf
Type i s menu_entry .
Label i s " add ncf " .

350 Visual_object : Edit_node
Type i s menu_entry .
Label i s " e d i t node " .

Visual_object : Reindex_node
355 Type i s menu_entry .

Label i s " reindex node " .

Visual_object : Delete_node
Type i s menu_entry .

360 Label i s " d e l e t e node " .

Visual_object : P a t h _ i n p u t _ f i e l d
Type i s i n p u t _ f i e l d .
Label i s " Path " .

365

Visual_object : L a b e l _ i n p u t _ f i e l d
Type i s i n p u t _ f i e l d .
Label i s " Label " .

370 / / ∗
∗

/ / The nodes r e p r e s e n t i n g t h e graph
/ / ∗

∗

Visual_object : Node_1
375 Type i s node .

Label i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Reference i s " (1+2) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

380

Visual_object : Node_11
Type i s node .
Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Reference i s " (3) " .

385 Children i s " 2 " .
Child1 i s "B−52 targ e te d SF−S o l d i e r s p o s i t i o n " .
Child2 i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Parents i s " 1 " .
Parent1 i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

390

Visual_object : Node_111
Type i s node .
Label i s "B−52 ta rge te d SF−S o l d i e r s p o s i t i o n " .
Reference i s " (1 7) " .

395 Children i s " 1 " .
Child1 i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

400 Visual_object : Node_1111
Type i s node .
Label i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Reference i s " (1 6) " .
Children i s " 1 " .

86 B. GOMSL MODEL OF YB-EDIT

405 Child1 i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Parents i s " 1 " .
Parent1 i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .

Visual_object : Node_11111
410 Type i s node .

Label i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Reference i s " (1 5) " .
Children i s " 2 " .
Child1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

415 Child2 i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Parents i s " 1 " .
Parent1 i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .

Visual_object : Node_111111
420 Type i s node .

Label i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Reference i s " (1 4) " .
Children i s " 4 " .
Child1 i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .

425 Child2 i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and
Tal iban outpost p o s i t i o n " .

Child3 i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Child4 i s " F/A−18 s u c c e s s f u l l y tar g e t ed Tal iban Outpost " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

430

Visual_object : Node_1111111
Type i s node .
Label i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Reference i s " (1 3) " .

435 Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Node_1111112
Type i s node .

440 Label i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and
Tal iban outpost p o s i t i o n " .

Reference i s " (1 2) " .
Children i s " 2 " .
Child1 i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Child2 i s "GPS coordinate r e p r e s e n t a t i o n " .

445 Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Node_11111121
Type i s node .

450 Label i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in
seconds of l a t /long " .

Reference i s " (1 1) " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n

and Tal iban outpost p o s i t i o n " .

455 Visual_object : Node_1111113
Type i s node .
Label i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Reference i s " (1 0) " .
Children i s " 1 " .

460 Child1 i s " SF−S o l d i e r s changed b a t t e r i e s " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

87

Visual_object : Node_11111131
465 Type i s node .

Label i s " SF−S o l d i e r s changed b a t t e r i e s " .
Reference i s " (9) " .
Children i s " 1 " .
Child1 i s " B a t t e r y of GPS r e c e i v e r died " .

470 Parents i s " 1 " .
Parent1 i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

Visual_object : Node_111111311
Type i s node .

475 Label i s " B a t t e r y of GPS r e c e i v e r died " .
Reference i s " (8) " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s changed b a t t e r i e s " .

480 Visual_object : Node_1111114
Type i s node .
Label i s " F/A−18 s u c c e s s f u l l y t arg e te d Tal iban Outpost " .
Reference i s " (7) " .
Children i s " 1 " .

485 Child1 i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Node_11111141
490 Type i s node .

Label i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Reference i s " (6) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .

495 Parents i s " 1 " .
Parent1 i s " F/A−18 s u c c e s s f u l l y tar ge t ed Tal iban Outpost " .

Visual_object : Node_111111411
Type i s node .

500 Label i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Reference i s " (5) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
Parents i s " 1 " .

505 Parent1 i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

Visual_object : Node_1111114111
Type i s node .
Label i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
510 Reference i s " (4) " .

Children i s " 1 " .
Child1 i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .

515

Visual_object : Node_112
Type i s node .
Label i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Reference i s " (a) " .

520 Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

Visual_object : Node_111112

88 B. GOMSL MODEL OF YB-EDIT

Type i s node .
525 Label i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .

Reference i s " (b) " .
Parents i s " 2 " .
Parent1 i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Parent2 i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
530

Visual_object : Node_11111122
Type i s node .
Label i s "GPS coordinate r e p r e s e n t a t i o n " .
Parents i s " 1 " .

535 Parent1 i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n
and Tal iban outpost p o s i t i o n " .

/ / a dummy node w i t h o u t c h i l d r e n .

Visual_object : Node_wo_children
540 Type i s node .

Label i s " node_wo_children " .

/ / ∗
∗

/ / The e d g e s be tween t h e nodes
545 / / ∗

∗

Visual_object : Edge_11−1
Type i s edge .
Source i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

550 Target i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

Visual_object : Edge_111−11
Type i s edge .
Source i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .

555 Target i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

Visual_object : Edge_1111−111
Type i s edge .
Source i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .

560 Target i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .

Visual_object : Edge_11111−1111
Type i s edge .
Source i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

565 Target i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .

Visual_object : Edge_111111−11111
Type i s edge .
Source i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

570 Target i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

Visual_object : Edge_1111111−111111
Type i s edge .
Source i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .

575 Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Edge_1111112−111111
Type i s edge .
Source i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
580 Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

89

Visual_object : Edge_11111121−1111112
Type i s edge .
Source i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
585 Target i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .

Visual_object : Edge_11111122−1111112
Type i s edge .
Source i s "GPS coordinate r e p r e s e n t a t i o n " .

590 Target i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and
Tal iban outpost p o s i t i o n " .

Visual_object : Edge_1111113−111111
Type i s edge .
Source i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

595 Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Edge_11111131−1111113
Type i s edge .
Source i s " SF−S o l d i e r s changed b a t t e r i e s " .

600 Target i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

Visual_object : Edge_111111311−111111311
Type i s edge .
Source i s " B a t t e r y of GPS r e c e i v e r died " .

605 Target i s " SF−S o l d i e r s changed b a t t e r i e s " .

Visual_object : Edge_1111114−111111
Type i s edge .
Source i s " F/A−18 s u c c e s s f u l l y ta rg e t ed Tal iban Outpost " .

610 Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Edge_11111141−1111114
Type i s edge .
Source i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

615 Target i s " F/A−18 s u c c e s s f u l l y ta rg e t ed Tal iban Outpost " .

Visual_object : Edge_111111411−11111141
Type i s edge .
Source i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .

620 Target i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

Visual_object : Edge_1111114111−111111411
Type i s edge .
Source i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
625 Target i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .

Visual_object : Edge_111112−1111114111
Type i s edge .
Source i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .

630 Target i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g
device " .

Visual_object : Edge_111112−11111
Type i s edge .
Source i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .

635 Target i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

Visual_object : Edge_112−11
Type i s edge .
Source i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

90 B. GOMSL MODEL OF YB-EDIT

640 Target i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .

Visual_object : Edge_1111114111−11111141
Type i s edge .
Source i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
645 Target i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

/ /
∗∗∗

/ / Top L e v e l Methods
/ /

∗∗∗

650

/ / ∗
∗

/ / C r e a t e WB−Graph :
/ / t h i s method i s used t o g e t t h e t a s k s d e s c r i b e d a b o v e done one by one
/ / ∗

∗
655

Method_for_goal : Create wb_graph
Step 1 . Store Task1 under <current_task_name > .
Step 2 . Decide :

I f <current_task_name > i s None , Then
660 Delete <current_ task > ;

Delete <current_task_name > ;
Return_with_goal_accomplished .

Step 3 . Get_task_item_whose Name i s <current_task_name >
and_store_under <current_ task > .

665 Step 4 . Accomplish_goal : Perform graph_act ions .
Step 5 . Store Next of <current_ task > under <current_task_name > .
Step 6 . Goto 2 .

/ / ∗
∗

670 / / Per form Graph A c t i o n s :
/ / t h e s e l e c t i o n r u l e t h a t d e t e r m i n e s t h e method t o be i n v o k e d due t o t h e
/ / c u r r e n t t a s k ’ s g o a l .
/ / ∗

∗

675 Selec t ion_rules_for_goal : Perform graph_act ions
I f Type of <current_ task > i s add_ncf , Then

Accomplish_goal : Add ncf using
Parent of <current_ task > , and Label of <current_ task > ,
and Reference of <current_ task > , and Node_number of <current_ task > .

680 I f Type of <current_ task > i s add_new_node , Then
Accomplish_goal : Add new_node using

Parent of <current_ task > , and Label of <current_ task > ,
and Reference of <current_ task > , and Node_number of <current_ task > .

I f Type of <current_ task > i s delete_node , Then
685 Accomplish_goal : Remove node using

Label of <current_ task > .
I f Type of <current_ task > i s i n s e r t _ n c f , Then

Accomplish_goal : I n s e r t node using
Parent of <current_ task > , and Label of <current_ task > ,

690 and Reference of <current_ task > , and Child1 of <current_ task > ,
and Child2 of <current_ task > , and Child3 of <current_ task > ,
and Child4 of <current_ task > .

I f Type of <current_ task > i s merge_nodes , Then

91

Accomplish_goal : Merge nodes using
695 Label1 of <current_ task > , and Label2 of <current_ task > ,

and New of <current_ task > , and Child1 of <current_ task > ,
and Child2 of <current_ task > , and Child3 of <current_ task > ,
and Child4 of <current_ task > , and Parent1 of <current_ task > ,
and Parent2 of <current_ task > , and Parent3 of <current_ task > ,

700 and Parent4 of <current_ task > .
I f Type of <current_ task > i s reindex_node , Then

Accomplish_goal : Reindex node using
Label of <current_ task > .

I f Type of <current_ task > i s sp l i t_node , Then
705 Accomplish_goal : S p l i t node using

Label of <current_ task > , and New_label1 of <current_ task > ,
and Reference1 of <current_ task > , and New2 of <current_ task > ,
and Reference2 of <current_ task > , and Child1 of <current_ task > ,
and Child2 of <current_ task > , and Child3 of <current_ task > ,

710 and Child4 of <current_ task > , and Parent1 of <current_ task > ,
and Parent2 of <current_ task > , and Parent3 of <current_ task > ,
and Parent4 of <current_ task > .

I f Type of <current_ task > i s a l t e r _ n o d e _ d e s c r i p t i o n , Then
Accomplish_goal : Alter node_descr ipt ion using

715 Label of <current_ task > , and New of <current_ task > ,
and Reference of <current_ task > .

I f Type of <current_ task > i s extend_node_descr ipt ion , Then
Accomplish_goal : Extend node_descr ipt ion using

Label of <current_ task > , and Extension of <current_ task > .
720 I f Type of <current_ task > i s add_edge , Then

Accomplish_goal : Add edge using
Source of <current_ task > , and Target of <current_ task > .

I f Type of <current_ task > i s a l t e r _ e dg e , Then
Accomplish_goal : Alter Edge using

725 Change of <current_ task > , and Source of <current_ task > ,
and Target of <current_ task > , and New of <current_ task > .

I f Type of <current_ task > i s delete_edge , Then
Accomplish_goal : Remove edge using

Source of <current_ task > , and Target of <current_ task > .
730 I f Type of <current_ task > i s reverse_edge , Then

Accomplish_goal : Reverse edge using
Source of <current_ task > , and Target of <current_ task > .

I f Type of <current_ task > i s add_fact , Then
Accomplish_goal : Add f a c t using

735 Descr ipt ion of <current_ task > .
I f Type of <current_ task > i s determine_fac t , Then

Accomplish_goal : Determine f a c t .
I f Type of <current_ task > i s reindex_whole_graph , Then

Accomplish_goal : Reindex graph .
740 Return_with_goal_accomplished .

/ /
∗∗∗

/ / Graph O p e r a t i o n s
/ /

∗∗∗

745

/ / ∗
∗

/ / Change P ar en t :
/ / change t h e t a r g e t o f t h e e d g e s be tween nodes wi th t h e g i v e n s o u r c e l a b e l s
/ / and t h e t a r g e t p a r e n t t o t h e new p a r e n t node

750 / / f i n i s h e d .
/ / ∗

92 B. GOMSL MODEL OF YB-EDIT

∗

Method_for_goal : Change parent using
<cp_old_parent > , and <cp_new_parent > , and <cp_child1 > ,

755 and <cp_child2 > , and <cp_child3 > , and <cp_child4 >
Step 1 . Decide :

I f <cp_child1 > i s n i l , Then
Goto 6 ;

I f <cp_child2 > i s n i l , Then
760 Goto 5 ;

I f <cp_child3 > i s n i l , Then
Goto 4 ;

I f <cp_child4 > i s n i l , Then
Goto 3 .

765 Step 2 . Accomplish_goal : Alter edge using
t a r g e t , and <cp_child4 > , and <cp_old_parent > ,
and <cp_new_parent > .

Step 3 . Accomplish_goal : Alter edge using
t a r g e t , and <cp_child3 > , and <cp_old_parent > ,

770 and <cp_new_parent > .
Step 4 . Accomplish_goal : Alter edge using

t a r g e t , and <cp_child2 > , and <cp_old_parent > ,
and <cp_new_parent > .

Step 5 . Accomplish_goal : Alter edge using
775 t a r g e t , and <cp_child1 > , and <cp_old_parent > ,

and <cp_new_parent > .
Step 6 . Return_with_goal_accomplished .

/ / ∗
∗

780 / / Change C h i l d :
/ / change t h e s o u r c e o f t h e e d g e s be tween nodes wi th t h e g i v e n t a r g e t l a b e l s
/ / and t h e s o u r c e c h i l d node t o t h e new c h i l d node
/ / f i n i s h e d .
/ / ∗

∗
785

Method_for_goal : Change c h i l d using
<cc_old_chi ld > , and <cc_new_child > ,
and <cc_parent1 > , and <cc_parent2 > ,
and <cc_parent3 > , and <cc_parent4 >

790 Step 1 . Decide :
I f <cc_parent1 > i s n i l , Then

Goto 6 ;
I f <cc_parent2 > i s n i l , Then

Goto 5 ;
795 I f <cc_parent3 > i s n i l , Then

Goto 4 ;
I f <cc_parent4 > i s n i l , Then

Goto 3 .
Step 2 . Accomplish_goal : Alter edge using

800 source , and <cc_old_chi ld > , and <cc_parent4 > ,
and <cc_new_child > .

Step 3 . Accomplish_goal : Alter edge using
source , and <cc_old_chi ld > , and <cc_parent3 > ,
and <cc_new_child > .

805 Step 4 . Accomplish_goal : Alter edge using
source , and <cc_old_chi ld > , and <cc_parent2 > ,
and <cc_new_child > .

Step 5 . Accomplish_goal : Alter edge using
source , and <cc_old_chi ld > , and <cc_parent1 > ,

810 and <cc_new_child > .
Step 6 . Return_with_goal_accomplished .

93

/ / ∗
∗

/ / Add as P ar en t :
815 / / add e d g e s d i r e c t i n g from t h e g i v e n c h i l d nodes t o t h e p a r e n t node

/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Add_as parent using
820 <aap_parent > , and <aap_child1 > ,

and <aap_child2 > , and <aap_child3 > ,
and <aap_child4 >

Step 1 . Decide :
I f <aap_child1 > i s n i l , Then

825 Goto 6 ;
I f <aap_child2 > i s n i l , Then

Goto 5 ;
I f <aap_child3 > i s n i l , Then

Goto 4 ;
830 I f <aap_child4 > i s n i l , Then

Goto 3 .
Step 2 . Accomplish_goal : Add edge using

<aap_child4 > , and <aap_parent > .
Step 3 . Accomplish_goal : Add edge using

835 <aap_child3 > , and <aap_parent > .
Step 4 . Accomplish_goal : Add edge using

<aap_child2 > , and <aap_parent > .
Step 5 . Accomplish_goal : Add edge using

<aap_child1 > , and <aap_parent > .
840 Step 6 . Return_with_goal_accomplished .

/ / ∗
∗

/ / Add as C h i l d :
/ / add e d g e s d i r e c t i n g form t h e c h i l d node t o t h e g i v e n p a r e n t nodes

845 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Add_as c h i l d using
<aac_chi ld > , and <aac_parent1 > ,

850 and <aac_parent2 > , and <aac_parent3 > ,
and <aac_parent4 >

Step 1 . Decide :
I f <aac_parent1 > i s n i l , Then

Goto 6 ;
855 I f <aac_parent2 > i s n i l , Then

Goto 5 ;
I f <aac_parent3 > i s n i l , Then

Goto 4 ;
I f <aac_parent4 > i s n i l , Then

860 Goto 3 .
Step 2 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent4 > .
Step 3 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent3 > .
865 Step 4 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent2 > .
Step 5 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent1 > .
Step 6 . Return_with_goal_accomplished .

870

94 B. GOMSL MODEL OF YB-EDIT

/ / ∗
∗

/ / Re index Graph :
/ / i s s u e t h e r e i n d e x whole graph command

875 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Reindex graph
Step 1 . Accomplish_goal : I s sue context_command using

880 " reindex whole graph " , and canvas ,
and n i l , and n i l .

Step 2 . Return_with_goal_accomplished .

/ /
∗∗∗

885 / / Node O p e r a t i o n s
/ /

∗∗∗

/ / ∗
∗

/ / Add N e c e s s a r y Causa l F a c t o r (NCF) :
890 / / i s s u e t h e command t o add a n c f

/ / e n t e r t h e node d e s c r i p t i o n g i v e n in a c t u a l t a s k
/ / f i n i s h e d .
/ / ∗

∗

895 Method_for_goal : Add ncf using
<ncf_parent > , and < n c f _ l a b e l > ,
and <ncf_re fe r e nce > , and <ncf_node_number>

Step 1 . Accomplish_goal : I s sue context_command using
" add ncf " , and node ,

900 and <ncf_parent > , and n i l .
Step 2 . Accomplish_goal : Enter n c f _ d e s c r i p t i o n using

< n c f _ l a b e l > , and <ncf_re fe renc e > ,
and <ncf_node_number> .

Step 3 . Return_with_goal_accomplished .
905

/ / ∗
∗

/ / Add Node :
/ / i s s u e t h e command t o add a new node
/ / e n t e r t h e node d e s c r i p t i o n g i v e n in a c t u a l t a s k

910 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Add new_node using
<nn_parent > , and <nn_label > ,

915 and <nn_reference > , and <nn_node_number>
Step 1 . Accomplish_goal : I s sue context_command using

" add new node " , and canvas ,
and n i l , and n i l .

Step 2 . Accomplish_goal : Enter new_node_description using
920 <nn_label > , and <nn_reference > ,

and <nn_node_number> .
Step 3 . Return_with_goal_accomplished .

95

/ / ∗
∗

925 / / Remove Node :
/ / f i n d t h e node t o d e l e t e
/ / i f t h e node i s not a l e a f node :
/ / − d e l e t e a l l t h e nodes e d g e s t o a l l c h i l d nodes
/ / i s s u e t h e d e l e t e command

930 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Remove node using <rm_label >
Step 1 . Look_for_object_whose Label i s <rm_label > and_store_under <t a r g e t > .

935 Step 2 . Decide :
I f Children of <t a r g e t > i s n i l , Then

Goto 7 ;
I f Children of <t a r g e t > i s " 1 " , Then

Goto 6 ;
940 I f Children of <t a r g e t > i s " 2 " , Then

Goto 5 ;
I f Children of <t a r g e t > i s " 3 " , Then

Goto 4 .
Step 3 . Accomplish_goal : Remove edge using

945 Child4 of < t a r g e t > , and <rm_label > .
Step 4 . Accomplish_goal : Remove edge using

Child3 of < t a r g e t > , and <rm_label > .
Step 5 . Accomplish_goal : Remove edge using

Child2 of < t a r g e t > , and <rm_label > .
950 Step 6 . Accomplish_goal : Remove edge using

Child1 of < t a r g e t > , and <rm_label > .
Step 7 . Accomplish_goal : I s sue context_command using

" delete_node " , and <rm_label > , and n i l , and n i l .
Step 8 . Return_with_goal_accomplished .

955

/ / ∗
∗

/ / I n s e r t Node : (b e tween p a r e n t node and o p t i o n a l c h i l d nodes)
/ / i s s u e t h e command t o add a n e c e s s a r y c a u s a l f a c t o r o f t h e p a r e n t node
/ / a l t e r e d g e s be tween p a r e n t node and g i v e n c h i l d nodes : new p a r e n t i s new

node
960 / / f i n i s h e d .

/ / ∗
∗

Method_for_goal : I n s e r t node using
<in_parent > , and < i n _ l a b e l > ,

965 and <i n _ r e f er e n c e > , and <in_chi ld1 > ,
and <in_chi ld2 > , and <in_chi ld3 > ,
and <in_chi ld4 >

Step 1 . Accomplish_goal : Add ncf using
<in_parent > , and < i n _ l a b e l > ,

970 and <i n _ r e f e r e n c e > , and n i l .
Step 2 . Accomplish_goal : Change parent using

<in_parent > , and < i n _ l a b e l > ,
and <in_chi ld1 > , and <in_chi ld2 > ,
and <in_chi ld3 > , and <in_chi ld4 > .

975 Step 3 . Return_with_goal_accomplished .

/ / ∗
∗

/ / Merge Nodes : (t a k e c a r e o f c o r r e s p o n d i n g v i s u a l o b j e c t s !)
/ / change l a b e l o f f i r s t node t o t h e new l a b e l

980 / / a l t e r e d g e s be tween s e c o n d node and g i v e n p a r e n t nodes : new c h i l d i s f i r s t

96 B. GOMSL MODEL OF YB-EDIT

/ / node
/ / a l t e r e d g e s be tween s e c o n d node and g i v e n c h i l d nodes : new p a r e n t i s f i r s t
/ / node
/ / d e l e t e t h e s e c o n d node (now w i t h o u t c h i l d r e n : dummy v i s u a l o b j e c t)

985 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Merge nodes using
<mn_label1 > , and <mn_label2 > ,

990 and <mn_new_label> , and <mn_new_rewference> ,
and <mn_child1 > , and <mn_child2 > ,
and <mn_child3 > , and <mn_child4 > ,
and <mn_parent1> , and <mn_parent2> ,
and <mn_parent3> , and <mn_parent4>

995 Step 1 . Accomplish_goal : Alter node_descr ipt ion using
<mn_label1 > , and <mn_new_label> ,
and <mn_new_reference > .

Step 2 . Accomplish_goal : Change c h i l d using
<mn_label2 > , and <mn_new_label> ,

1000 and <mn_parent1> , and <mn_parent2> ,
and <mn_parent3> , and <mn_parent4> .

Step 3 . Accomplish_goal : Change parent using
<mn_label2 > , and <mn_new_label> ,
and <mn_child1 > , and <mn_child2 > ,

1005 and <mn_child3 > , and <mn_child4 > .
Step 4 . Accomplish_goal : Remove node using

" node_wo_children " .
Step 5 . Return_with_goal_accomplished .

1010 / / ∗
∗

/ / Re index Node :
/ / i s s u e t h e r e i n d e x node command
/ / f i n i s h e d .
/ / ∗

∗
1015

Method_for_goal : Reindex node using
< r i _ l a b e l >

Step 1 . Accomplish_goal : I s sue context_command using
" reindex node " , and < r i _ l a b e l > ,

1020 and n i l , and n i l .
Step 2 . Return_with_goal_accomplished .

/ / ∗
∗

/ / S p l i t Node : (t a k e c a r e o f c o r r e s p o n d i n g v i s u a l o b j e c t s !)
1025 / / change l a b e l o f t h e node t o t h e one o f t h e new l a b e l s and r e f e r e n c e

/ / add a NCF o f t h e p a r e n t o f t h e o r i g i n a l node with t h e o t h e r o f t h e new
l a b e l s

/ / and r e f e r e n c e
/ / add e d g e s be tween g i v e n p a r e n t nodes : new c h i l d i s new node
/ / add e d g e s be tween g i v e n c h i l d nodes : new p a r e n t i s new node

1030 / / node
/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : S p l i t node using
1035 <sn_labe l > , and <sn_new_label1 > ,

and <sn_reference1 > , and <sn_new_label2 > ,
and <sn_reference2 > , and <sn_chi ld1 > ,

97

and <sn_chi ld2 > , and <sn_chi ld3 > ,
and <sn_chi ld4 > , and <sn_parent1 > ,

1040 and <sn_parent2 > , and <sn_parent3 > ,
and <sn_parent4 >

Step 1 . Accomplish_goal : Alter node_descr ipt ion using
<sn_labe l > , and <sn_new_label1 > ,
and <sn_reference1 > .

1045 Step 2 . Accomplish_goal : Add ncf using
<sn_parent1 > , and <sn_new_label2 > ,
and <sn_reference2 > , and n i l .

Step 3 . Accomplish_goal : Add_as c h i l d using
<sn_new_label2 > , and <sn_parent1 > ,

1050 and <sn_parent2 > , and <sn_parent3 > ,
and <sn_parent4 > .

Step 4 . Accomplish_goal : Add_as parent using
<sn_new_label2 > , and <sn_chi ld1 > ,
and <sn_chi ld2 > , and <sn_chi ld3 > ,

1055 and <sn_chi ld4 > .
Step 5 . Return_with_goal_accomplished .

/ /
∗∗∗

/ / Node−D e s c r i p t i o n O p e r a t o r s
1060 / /

∗∗∗

/ / ∗
∗

/ / A l t e r Node D e s c r i p t i o n :
/ / i s s u e t h e e d i t node command

1065 / / s e l e c t t h e t e x t i n p u t f i e l d and t h e t e x t
/ / e n t e r t h e new node d e s c r i p t i o n
/ / c l o s e t h e d i a l o g box (h i t ’ r e turn ’− key)
/ / f i n i s h e d .
/ / ∗

∗
1070

Method_for_goal : Alter node_descr ipt ion using
<a n d _ o r i g i n a l _ l a b e l > , and <and_new_label > ,
<and_reference >

Step 1 . Accomplish_goal : I s sue context_command using
1075 " edit_node " , and node ,

and <a n d _ o r i g i n a l _ l a b e l > , and n i l .
Step 2 . Accomplish_goal : Double_c l i ck_at item using

" Label " , and i n p u t _ f i e l d .
Step 3 . Accomplish_goal : Enter node_text using

1080 <and_new_label > .
Step 4 . Accomplish_goal : Enter node_text using

<and_reference > .
Step 5 . Keystroke CR .
Step 6 . Return_with_goal_accomplished .

1085

/ / ∗
∗

/ / Ente r NCF D e s c r i p t i o n :
/ / i f t h e node number i s g i v e n :
/ / − s e l e c t t h e number i n p u t f i e l d

1090 / / −e n t e r t h e node number
/ / − s e l e c t t h e t e x t i n p u t f i e l d
/ / e n t e r t h e node t e x t
/ / e n t e r t h e node r e f e r e n c e t o L i s t o f F a c t s i t em

98 B. GOMSL MODEL OF YB-EDIT

/ / c l o s e t h e d i a l o g box (dummy : t y p e in "X" r e p r e s e n t i n g a ’ r e turn ’− key h i t)
1095 / / f i n i s h e d .

/ / ∗
∗

Method_for_goal : Enter n c f _ d e s c r i p t i o n using
<encfd_labe l > , and <encfd_reference > ,

1100 and <encfd_number>
Step 1 . Decide :

I f <encfd_number> i s n i l , Then
Goto 5 .

Step 2 . Accomplish_goal : Double_c l i ck_at item using
1105 " Path " , and i n p u t _ f i e l d .

Step 3 . Accomplish_goal : Enter node_number using
<encfd_number> .

Step 4 . Accomplish_goal : Double_c l i ck_at item using
" Label " , and i n p u t _ f i e l d .

1110 Step 5 . Accomplish_goal : Enter node_text using
<encfd_labe l > .

Step 6 . Accomplish_goal : Enter node_text using
<encfd_reference > .

Step 7 . Keystroke CR .
1115 Step 8 . Return_with_goal_accomplished .

/ / ∗
∗

/ / Ente r New Node D e s c r i p t i o n :
/ / i f t h e node number i s g i v e n : e n t e r t h e node number

1120 / / s e l e c t t h e t e x t i n p u t f i e l d
/ / e n t e r t h e node t e x t
/ / e n t e r t h e node r e f e r e n c e t o L i s t o f F a c t s i t em
/ / c l o s e t h e d i a l o g box (h i t ’ r e turn ’− key)
/ / f i n i s h e d .

1125 / / ∗
∗

Method_for_goal : Enter new_node_description using
<ennd_label > , and <ennd_reference > ,
and <ennd_number>

1130 Step 1 . Decide :
I f <ennd_number> i s n i l , Then

Goto 3 .
Step 2 . Accomplish_goal : Enter node_number using

<ennd_number> .
1135 Step 3 . Accomplish_goal : Double_c l i ck_at item using

" Label " , and i n p u t _ f i e l d .
Step 4 . Accomplish_goal : Enter node_text using

<ennd_label > .
Step 5 . Accomplish_goal : Enter node_text using

1140 <ennd_reference > .
Step 6 . Keystroke CR .
Step 7 . Return_with_goal_accomplished .

/ / ∗
∗

1145 / / Ente r Node Number :
/ / t y p e in t h e node number
/ / f i n i s h e d .
/ / ∗

∗

1150 Method_for_goal : Enter node_number using
<enn_number>

99

Step 1 . Type_in <enn_number> .
Step 2 . Return_with_goal_accomplished .

1155 / / ∗
∗

/ / Ente r Node Text :
/ / t y p e in t h e node d e s c r i p t i o n t e x t
/ / f i n i s h e d .
/ / ∗

∗
1160

Method_for_goal : Enter node_text using
<e n t _ t e x t >

Step 1 . Decide :
I f <e n t _ t e x t > i s_not n i l , Then

1165 Type_in <e n t _ t e x t > .
Step 2 . Return_with_goal_accomplished .

/ / ∗
∗

/ / Extend Node D e s c r i p t i o n :
1170 / / i s s u e t h e e d i t node command

/ / s e l e c t t h e t e x t i n p u t f i e l d
/ / e n t e r t h e new node d e s c r i p t i o n
/ / c l o s e t h e d i a l o g box (h i t ’ r e turn ’− key)
/ / f i n i s h e d .

1175 / / ∗
∗

Method_for_goal : Extend node_descr ipt ion using
< x t n d _ o r i g i n a l _ l a b e l > , and <xtnd_new_label >

Step 1 . Accomplish_goal : I s sue context_command using
1180 " e d i t node " , and node ,

and < x t n d _ o r i g i n a l _ l a b e l > , and n i l .
Step 2 . Accomplish_goal : C l i c k _ a t item using

" Label " , and i n p u t _ f i e l d .
Step 3 . Accomplish_goal : Enter node_text using

1185 <xtnd_new_label > .
Step 4 . Keystroke CR .
Step 5 . Return_with_goal_accomplished .

/ /
∗∗∗

1190 / / Edge O p e r a t i o n s
/ /

∗∗∗

/ / ∗
∗

/ / Add Edge :
1195 / / drag from t h e s o u r c e node t o t h e t a r g e t n o d e

/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Add edge using
1200 <ae_source > , and <ae_targe t >

Step 1 . Accomplish_goal : Drag item using
<ae_source > , and node ,
and <ae_targe t > , and node .

Step 2 . Return_with_goal_accomplished .

100 B. GOMSL MODEL OF YB-EDIT

1205

/ / ∗
∗

/ / A l t e r Edge :
/ / d e t e r m i n e , whethe r t h e s o u r c e or t h e t a r g e t o f t h e edge i s t o be changed
/ / e i t h e r change t h e s o u r c e o f t h e edge

1210 / / o r
/ / add an edge from s o u r c e node t o t h e new t a r g e t node o f t h e e dge
/ / and d e l e t e t h e o l d edge
/ / f i n i s h e d .
/ / ∗

∗
1215

Method_for_goal : Alter edge using
<ale_change > , and <ale_source > , and < a l e _ t a r g e t > , and <ale_new

>
Step 1 . Decide :

I f <ale_change > i s t a r g e t , Then
1220 Goto 4 .

Step 2 . Accomplish_goal : Drag edge using
<ale_source > , and < a l e _ t a r g e t > ,
and <ale_new> .

Step 3 . Return_with_goal_accomplished .
1225 Step 4 . Accomplish_goal : Add edge using

<ale_source > , and <ale_new> .
Step 5 . Accomplish_goal : Remove edge using

<ale_source > , and < a l e _ t a r g e t > .
Step 6 . Return_with_goal_accomplished .

1230

/ / ∗
∗

/ / Remove Edge :
/ / i s s u e t h e d e l e t e command in t h e c o n t e x t s e n s i t i v e menu
/ / f i n i s h e d .

1235 / / ∗
∗

Method_for_goal : Remove edge using
<rme_source > , and <rme_target >

Step 1 . Accomplish_goal : I s sue context_command using
1240 " d e l e t e edge " , and edge ,

and <rme_source > , and <rme_target > .
Step 2 . Return_with_goal_accomplished .

/ /
∗∗∗

1245 / / L i s t o f F a c t s O p e r a t i o n s
/ /

∗∗∗

/ / ∗
∗

/ / Add F a c t :
1250 / / s w i t c h t o t h e t e x t e d i t o r

/ / f i n d and c l i c k on t h e i n s e r t i o n p o i n t (dummy)
/ / e n t e r t h e i n d e x number
/ / e n t e r t h e f a c t d e s c r i p t i o n
/ / s w i t c h t o yb−e d i t

1255 / / f i n i s h e d .
/ / ∗

∗

101

Method_for_goal : Add f a c t using
< a f _ d e s c r i p t i o n >

1260 Step 1 . Accomplish_goal : Change_to program using
" Edi tor " .

Step 2 . Accomplish_goal : C l i c k _ a t item using
n i l , and " i n s e r t i o n _ p o i n t " .

Step 3 . Accomplish_goal : Enter f a c t _ d e s c r i p t i o n using
1265 < a f _ d e s c r i p t i o n > .

Step 4 . Accomplish_goal : Enter index_number .
Step 5 . Accomplish_goal : Change_to program using

"YB−Edit " .
Step 6 . Return_with_goal_accomplished .

1270

/ / ∗
∗

/ / Determine F a c t :
/ / s w i t c h t o t h e t e x t e d i t o r
/ / f i n d nex t f a c t (dummy : a v e r i f y o p e r a t o r which consumes s e a r c h / d e c i s i o n t ime

)
1275 / / change t o yb−e d i t

/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Determine f a c t
1280 Step 1 . Accomplish_goal : Change_to program using

" Edi tor " .
Step 2 . Verify " Find the f a c t t h a t i s causa l f a c t o r " .
Step 3 . Accomplish_goal : Change_to program using

"YB−Edit " .
1285 Step 4 . Return_with_goal_accomplished .

/ / ∗
∗

/ / Ente r F a c t D e s c r i p t i o n :
/ / t y p e in d e s c r i p t i o n t e x t

1290 / / c h e c k d e s c r i p t i o n t e x t
/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Enter f a c t _ d e s c r i p t i o n using
1295 < e f _ d e s c r i p t i o n >

Step 1 . Type_in < e f _ d e s c r i p t i o n > .
Step 2 . Verify " Descr ip t ion i s c o r r e c t " .
Step 3 . Return_with_goal_accomplished .

1300 / / ∗
∗

/ / Ente r Index Number :
/ / t h i n k a b o u t i n d e x number (dummy : X)
/ / t y p e in i n d e x number (dummy : X)
/ / f i n i s h e d .

1305 / / ∗
∗

Method_for_goal : Enter index_number
Step 1 . Think_of "X" .
Step 2 . Type_in " (X) " .

1310 Step 3 . Return_with_goal_accomplished .

/ /

102 B. GOMSL MODEL OF YB-EDIT

∗∗∗

/ / Program O p e r a t i o n s
/ /

∗∗∗

1315

/ / ∗
∗

/ / Change_to Program :
/ / k l i c k program window
/ / f i n i s h e d .

1320 / / ∗
∗

Method_for_goal : Change_to program using
<ctp_program_name>

Step 1 . Accomplish_goal : C l i c k _ a t item using
1325 <ctp_program_name> , and window .

Step 2 . Return_with_goal_accomplished .

/ /
∗∗∗

/ / B a s i c O p e r a t i o n s
1330 / /

∗∗∗

/ / ∗
∗

/ / C l i c k a t Edge :
/ / f i n d t h e egde

1335 / / p o i n t t o t h e edge
/ / c l i c k mouse b u t t o n
/ / f i n i s h e d .
/ / ∗

∗

1340 Method_for_goal : C l i c k _ a t edge using
<cae_source > , and <cae_ targe t >

Step 1 . Look_for_object_whose Type i s edge , and Source i s <cae_source > ,
and Target i s <cae_ targe t > and_store_under <cae_edge > .

Step 2 . Point_ to <cae_edge > .
1345 Step 3 . Click mouse_button .

Step 4 . Delete <cae_edge > ; Return_with_goal_accomplished .

/ / ∗
∗

/ / C l i c k a t I t em :
1350 / / f i n d an i t em with a s p e c i f i c l a b e l and a s p e c i f i c t y p e

/ / p o i n t t o t h e i t em
/ / c l i c k mouse b u t t o n
/ / f i n i s h e d .
/ / ∗

∗
1355

Method_for_goal : C l i c k _ a t item using
< c a i _ l a b e l > , and <cai_type >

Step 1 . Look_for_object_whose Label i s < c a i _ l a b e l > ,
and Type i s <cai_type > and_store_under < c a i _ t a r g e t > .

1360 Step 2 . Point_ to < c a i _ t a r g e t > .
Step 3 . Click mouse_button .

103

Step 4 . Delete < c a i _ t a r g e t > ; Return_with_goal_accomplished .

/ / ∗
∗

1365 / / Drag Edge :
/ / f i n d t h e edge
/ / p o i n t t o t h e edge
/ / h o l d down t h e mouse b u t t o n
/ / f i n d t h e t a r g e t

1370 / / p o i n t t o t h e t a r g e t
/ / r e l e a s e mouse b u t t o n
/ / f i n i s h e d .
/ / ∗

∗

1375 Method_for_goal : Drag edge using
<da_edge_source > , and <da_edge_target > ,
and <da_dest inat ion >

Step 1 . Look_for_object_whose Type i s edge , and Source i s <da_edge_source > ,
and Target i s <da_edge_target > and_store_under <da_edge> .

1380 Step 2 . Point_ to <da_edge> .
Step 3 . Hold_down mouse_button .
Step 4 . Look_for_object_whose Type i s node , and Label i s <da_dest inat ion >

and_store_under <da_target > .
Step 5 . Point_ to <da_target > .

1385 Step 6 . Release mouse_button .
Step 7 . Delete <da_edge> ; Delete <da_target > ; Return_with_goal_accomplished .

/ / ∗
∗

/ / Drag I tem :
1390 / / f i n d t h e o b j e c t

/ / p o i n t t o t h e o b j e c t
/ / h o l d down t h e mouse b u t t o n
/ / f i n d t h e t a r g e t
/ / p o i n t t o t h e t a r g e t

1395 / / r e l e a s e mouse b u t t o n
/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Drag item using
1400 <d i _ l a b e l > , and <di_type > ,

and <d i _ d e s t i n a t i o n > , and <di_dest_type >
Step 1 . Look_for_object_whose Type i s <di_type > , and Label i s < d i _ l a b e l >

and_store_under <di_item > .
Step 2 . Point_ to <di_item > .

1405 Step 3 . Hold_down mouse_button .
Step 4 . Look_for_object_whose Type i s <di_dest_type > ,

and Label i s <d i _ d e s t i n a t i o n > and_store_under < d i _ t a r g e t > .
Step 5 . Point_ to < d i _ t a r g e t > .
Step 6 . Release mouse_button .

1410 Step 7 . Delete <di_item > ; Delete < d i _ t a r g e t > ; Return_with_goal_accomplished .

/ / ∗
∗

/ / Double C l i c k a t I t em :
/ / f i n d an i t em with a s p e c i f i c l a b e l and a s p e c i f i c t y p e

1415 / / p o i n t t o t h e i t em
/ / d o u b l e c l i c k mouse b u t t o n
/ / f i n i s h e d .
/ / ∗

∗

104 B. GOMSL MODEL OF YB-EDIT

1420 Method_for_goal : Double_c l i ck_at item using
< d c i _ l a b e l > , and <dci_type >

Step 1 . Look_for_object_whose Label i s < d c i _ l a b e l > ,
and Type i s <dci_type > and_store_under < d c i _ t a r g e t > .

Step 2 . Point_ to < d c i _ t a r g e t > .
1425 Step 3 . Double_click mouse_button .

Step 4 . Delete < d c i _ t a r g e t > ; Return_with_goal_accomplished .

/ / ∗
∗

/ / I s s u e Contex t Command :
1430 / / L o c a t e and

/ / (r i g h t −) c l i c k on t h e c o r r e s p o n d i n g o b j e c t
/ / Find and c l i c k t h e c o r r e s p o n d i n g menu e n t r y
/ / f i n i s h e d .
/ / ∗

∗
1435

Method_for_goal : I s sue context_command using
<icc_command> , and < i c c _ c o n t e x t > ,
and < i c c _ l a b e l 1 > , and < i c c _ l a b e l 2 >

Step 1 . Decide :
1440 I f < i c c _ c o n t e x t > i s canvas , Then

Accomplish_goal : C l i c k _ a t item using
n i l , and < i c c _ c o n t e x t > ;

I f < i c c _ c o n t e x t > i s edge , Then
Accomplish_goal : C l i c k _ a t edge using

1445 < i c c _ l a b e l 1 > , and < i c c _ l a b e l 2 > ;
I f < i c c _ c o n t e x t > i s node , Then

Accomplish_goal : C l i c k _ a t item using
< i c c _ l a b e l 1 > , and < i c c _ c o n t e x t > .

Step 2 . Accomplish_goal : C l i c k _ a t item using
1450 <icc_command> , and menu_entry .

Step 3 . Return_with_goal_accomplished .

C. GOMSL Model of the New
Design

Define_model : "new yb−e d i t use GPS Fr iendly F i r e "
Star t ing_goal i s Create wb_graph .

4 / /
∗∗∗

/ / Assumptions :
/ / − a L i s t o f F a c t s e x i s t s
/ / − t h e new yb−e d i t i s a l l r e a d y running , p r e s e n t i n g a new empty document
/ / and d i s p l a y i n g t h e L i s t o f F a c t s

9 / / − t h e canvas ’ s s i z e i s b i g enough t o d i s p l a y t h e whole graph :−)
/ / − nodes have no more than f o u r c h i l d and f o u r p a r e n t nodes (t h i s must a l s o
/ / t r u e f o r t h e r e s u l t nodes o f merge o p e r a t i o n s !)
/ /

∗∗∗

14 / /
∗∗∗

/ / The Tasks
/ / a l i s t o f t a s k i t e m s
/ /

∗∗∗

19 Task_item : Task1
Name i s Task1 .
Type i s determine_fac t .
Next i s Task2 .

24 Task_item : Task2
Name i s Task2 .
Type i s add_new_node .
Label i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Node_number i s " 1 " .

29 Reference i s " (1+2) " .
Next i s Task3 .

Task_item : Task3
Name i s Task3 .

34 Type i s determine_fac t .
Next i s Task4 .

Task_item : Task4
Name i s Task4 .

39 Type i s add_ncf .
Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Reference i s " (3) " .

105

106 C. GOMSL MODEL OF THE NEW DESIGN

Parent i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Next i s Task5 .

44

Task_item : Task5
Name i s Task5 .
Type i s determine_fac t .
Next i s Task6 .

49

Task_item : Task6
Name i s Task6 .
Type i s add_ncf .
Label i s "B−52 targ e te d SF−S o l d i e r s p o s i t i o n " .

54 Reference i s " (1 7) " .
Parent i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Next i s Task7 .

Task_item : Task7
59 Name i s Task7 .

Type i s determine_fac t .
Next i s Task8 .

Task_item : Task8
64 Name i s Task8 .

Type i s add_ncf .
Label i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Reference i s " (1 6) " .
Parent i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .

69 Next i s Task9 .

Task_item : Task9
Name i s Task9 .
Type i s determine_fac t .

74 Next i s Task10 .

Task_item : Task10
Name i s Task10 .
Type i s add_ncf .

79 Label i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Reference i s " (1 5) " .
Parent i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Next i s Task11 .

84 Task_item : Task11
Name i s Task11 .
Type i s determine_fac t .
Next i s Task12 .

89 Task_item : Task12
Name i s Task12 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Reference i s " (1 4) " .

94 Parent i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Next i s Task13 .

Task_item : Task13
Name i s Task13 .

99 Type i s determine_fac t .
Next i s Task14 .

Task_item : Task14
Name i s Task14 .

104 Type i s add_ncf .

107

Label i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Reference i s " (1 3) " .
Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task15 .

109

Task_item : Task15
Name i s Task15 .
Type i s determine_fac t .
Next i s Task16 .

114

Task_item : Task16
Name i s Task16 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
119 Reference i s " (1 2) " .

Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task17 .

Task_item : Task17
124 Name i s Task17 .

Type i s determine_fac t .
Next i s Task18 .

Task_item : Task18
129 Name i s Task18 .

Type i s add_ncf .
Label i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Reference i s " (1 1) " .
Parent i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
134 Next i s Task19 .

Task_item : Task19
Name i s Task19 .
Type i s determine_fac t .

139 Next i s Task20 .

Task_item : Task20
Name i s Task20 .
Type i s add_ncf .

144 Label i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Reference i s " (1 0) " .
Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task21 .

149 Task_item : Task21
Name i s Task21 .
Type i s determine_fac t .
Next i s Task22 .

154 Task_item : Task22
Name i s Task22 .
Type i s add_ncf .
Label i s " SF−S o l d i e r s changed b a t t e r i e s " .
Reference i s " (9) " .

159 Parent i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Next i s Task23 .

Task_item : Task23
Name i s Task23 .

164 Type i s determine_fac t .

108 C. GOMSL MODEL OF THE NEW DESIGN

Next i s Task24 .

Task_item : Task24
Name i s Task24 .

169 Type i s add_ncf .
Label i s " B a t t e r y of GPS r e c e i v e r died " .
Reference i s " (8) " .
Parent i s " SF−S o l d i e r s changed b a t t e r i e s " .
Next i s Task25 .

174

Task_item : Task25
Name i s Task25 .
Type i s determine_fac t .
Next i s Task26 .

179

Task_item : Task26
Name i s Task26 .
Type i s add_ncf .
Label i s " F/A−18 s u c c e s s f u l l y tar ge t e d Tal iban Outpost " .

184 Reference i s " (7) " .
Parent i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Next i s Task27 .

Task_item : Task27
189 Name i s Task27 .

Type i s determine_fac t .
Next i s Task28 .

Task_item : Task28
194 Name i s Task28 .

Type i s add_ncf .
Label i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Reference i s " (6) " .
Parent i s " F/A−18 s u c c e s s f u l l y tar g e t ed Tal iban Outpost " .

199 Next i s Task29 .

Task_item : Task29
Name i s Task29 .
Type i s determine_fac t .

204 Next i s Task30 .

Task_item : Task30
Name i s Task30 .
Type i s add_ncf .

209 Label i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g
device " .

Reference i s " (4) " .
Parent i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Next i s Task31 .

214 Task_item : Task31
Name i s Task31 .
Type i s determine_fac t .
Next i s Task32 .

219 Task_item : Task32
Name i s Task32 .
Type i s i n s e r t _ n c f .
Label i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Reference i s " (5) " .

224 Parent i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Child1 i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .

109

Next i s Task33 .

/ / e x t e n d i n g node d e s c r i p t i o n with t h e f a c t r e f e r e n c e i s not r e q u i r e d anymore ,
229 / / b e c a u s e t h e new yb−e d i t manages t h e L i s t o f F a c t s . Now , t h e f a c t i s added

/ / t o t h e l i s t o f f a c t s f i r s t , and a f t e r w a r d s t h i s f a c t added as a n c f t o a
/ / node .

Task_item : Task33
234 Name i s Task33 .

Type i s add_fact .
Descr ipt ion i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Next i s Task34 .

239 Task_item : Task34
Name i s Task34 .
Type i s add_ncf .
Label i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Parent i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

244 Next i s Task35 .

Task_item : Task35
Name i s Task35 .
Type i s add_fact .

249 Descr ipt ion i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Next i s Task36 .

Task_item : Task36
Name i s Task36 .

254 Type i s add_ncf .
Label i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Parent i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Next i s Task37 .

259 Task_item : Task37
Name i s Task37 .
Type i s add_edge .
Source i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Target i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
264 Next i s Task38 .

Task_item : Task38
Name i s Task38 .
Type i s add_fact .

269 Descr ipt ion i s "GPS coordinate r e p r e s e n t a t i o n " .
Next i s Task39 .

Task_item : Task39
Name i s Task39 .

274 Type i s add_ncf .
Label i s "GPS coordinate r e p r e s e n t a t i o n " .
Parent i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Next i s None .

279 / / add ing t h e r e f e r e n c e t o t h e node d e s c r i p t i o n was f o r g o t t e n
/ / no t any l o n g e r : a u t o m a t i c l y h a n d l e d by yb−e d i t !

/ /
∗∗∗

/ / V i s u a l O b j e c t s
284 / /

110 C. GOMSL MODEL OF THE NEW DESIGN

∗∗∗

/ / ∗
∗

/ / The Program Windows
/ / ∗

∗
289

Visual_object : Ybedit_program_window
Type i s window .
Label i s "YB−Edit " .

294 / / ∗
∗

/ / new YB−E d i t s i n t e r f a c e e l e m e n t s
/ / ∗

∗

Visual_object : Canvas
299 Type i s canvas .

Label i s " Graph " .

Visual_object : L i s t _ o f _ f a c t s
Type i s l i s t .

304 Label i s " L i s t of Fac t s " .

Visual_object : F a c t _ d e s c r i p t i o n
Type i s i n p u t _ f i e l d .
Label i s " Fact Descr ip t ion " .

309

Visual_object : F a c t _ r e f e r e n c e
Type i s i n p u t _ f i e l d .
Label i s " Fact Reference " .

314 Visual_object : Node_Description
Type i s i n p u t _ f i e l d .
Label i s "Node Descr ipt ion " .

Visual_object : Node_Reference
319 Type i s i n p u t _ f i e l d .

Label i s "Node Reference " .

Visual_object : Causes
Type i s i n p u t _ f i e l d .

324 Label i s " Causes " .

Visual_object : E f f e c t s
Type i s i n p u t _ f i e l d .
Label i s " E f f e c t s " .

329

Visual_object : Trash
Type i s t r a s h .
Label i s " Trash " .

334 Visual_object : Merge
Type i s f i e l d .
Label i s " Merge " .

Visual_object : S p l i t
339 Type i s f i e l d .

Label i s " S p l i t " .

111

/ / a dummy s e l e c t i o n

344 Visual_object : S e l e c t i o n
Type i s s e l e c t i o n .

/ / a dummy i n s e r t i o n p o i n t

349 Visual_object : I n s e r t i o n _ p o i n t
Type i s i n s e r t i o n _ p o i n t .

/ / ∗
∗

/ / The nodes r e p r e s e n t i n g t h e graph
354 / / ∗

∗

Visual_object : Node_1
Type i s node .
Label i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

359 Reference i s " (1+2) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

Visual_object : Node_11
364 Type i s node .

Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Reference i s " (3) " .
Children i s " 2 " .
Child1 i s "B−52 targ e te d SF−S o l d i e r s p o s i t i o n " .

369 Child2 i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Parents i s " 1 " .
Parent1 i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

Visual_object : Node_111
374 Type i s node .

Label i s "B−52 ta rge te d SF−S o l d i e r s p o s i t i o n " .
Reference i s " (1 7) " .
Children i s " 1 " .
Child1 i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .

379 Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

Visual_object : Node_1111
Type i s node .

384 Label i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Reference i s " (1 6) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Parents i s " 1 " .

389 Parent1 i s "B−52 targ e te d SF−S o l d i e r s p o s i t i o n " .

Visual_object : Node_11111
Type i s node .
Label i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

394 Reference i s " (1 5) " .
Children i s " 2 " .
Child1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Child2 i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Parents i s " 1 " .

399 Parent1 i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .

Visual_object : Node_111111
Type i s node .

112 C. GOMSL MODEL OF THE NEW DESIGN

Label i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
404 Reference i s " (1 4) " .

Children i s " 4 " .
Child1 i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Child2 i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Child3 i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

409 Child4 i s " F/A−18 s u c c e s s f u l l y tar g e t ed Tal iban Outpost " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

Visual_object : Node_1111111
414 Type i s node .

Label i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Reference i s " (1 3) " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

419

Visual_object : Node_1111112
Type i s node .
Label i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Reference i s " (1 2) " .

424 Children i s " 2 " .
Child1 i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Child2 i s "GPS coordinate r e p r e s e n t a t i o n " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

429

Visual_object : Node_11111121
Type i s node .
Label i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Reference i s " (1 1) " .

434 Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n

and Tal iban outpost p o s i t i o n " .

Visual_object : Node_1111113
Type i s node .

439 Label i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Reference i s " (1 0) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s changed b a t t e r i e s " .
Parents i s " 1 " .

444 Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Node_11111131
Type i s node .
Label i s " SF−S o l d i e r s changed b a t t e r i e s " .

449 Reference i s " (9) " .
Children i s " 1 " .
Child1 i s " B a t t e r y of GPS r e c e i v e r died " .
Parents i s " 1 " .
Parent1 i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

454

Visual_object : Node_111111311
Type i s node .
Label i s " B a t t e r y of GPS r e c e i v e r died " .
Reference i s " (8) " .

459 Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s changed b a t t e r i e s " .

113

Visual_object : Node_1111114
Type i s node .

464 Label i s " F/A−18 s u c c e s s f u l l y t arg e te d Tal iban Outpost " .
Reference i s " (7) " .
Children i s " 1 " .
Child1 i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Parents i s " 1 " .

469 Parent1 i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

Visual_object : Node_11111141
Type i s node .
Label i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

474 Reference i s " (6) " .
Children i s " 1 " .
Child1 i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Parents i s " 1 " .
Parent1 i s " F/A−18 s u c c e s s f u l l y tar ge t ed Tal iban Outpost " .

479

Visual_object : Node_111111411
Type i s node .
Label i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Reference i s " (5) " .

484 Children i s " 1 " .
Child1 i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
Parents i s " 1 " .
Parent1 i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

489 Visual_object : Node_1111114111
Type i s node .
Label i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
Reference i s " (4) " .
Children i s " 1 " .

494 Child1 i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .

Visual_object : Node_112
499 Type i s node .

Label i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Reference i s " (a) " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

504

Visual_object : Node_111112
Type i s node .
Label i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Reference i s " (b) " .

509 Parents i s " 2 " .
Parent1 i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Parent2 i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .

Visual_object : Node_11111122
514 Type i s node .

Label i s "GPS coordinate r e p r e s e n t a t i o n " .
Parents i s " 1 " .
Parent1 i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n

and Tal iban outpost p o s i t i o n " .

519 / / a dummy node w i t h o u t c h i l d r e n .

114 C. GOMSL MODEL OF THE NEW DESIGN

Visual_object : Node_wo_children
Type i s node .
Label i s " node_wo_children " .

524

/ / a dummy new node

Visual_object : New_node
Type i s node .

529 Label i s "New Node" .

/ / ∗
∗

/ / The e d g e s be tween t h e nodes
/ / ∗

∗
534

Visual_object : Edge_11−1
Type i s edge .
Source i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Target i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .

539

Visual_object : Edge_111−11
Type i s edge .
Source i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .
Target i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .

544

Visual_object : Edge_1111−111
Type i s edge .
Source i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Target i s "B−52 tar ge t ed SF−S o l d i e r s p o s i t i o n " .

549

Visual_object : Edge_11111−1111
Type i s edge .
Source i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Target i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .

554

Visual_object : Edge_111111−11111
Type i s edge .
Source i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Target i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

559

Visual_object : Edge_1111111−111111
Type i s edge .
Source i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

564

Visual_object : Edge_1111112−111111
Type i s edge .
Source i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

569

Visual_object : Edge_11111121−1111112
Type i s edge .
Source i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Target i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
574

Visual_object : Edge_11111122−1111112
Type i s edge .
Source i s "GPS coordinate r e p r e s e n t a t i o n " .

115

Target i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and
Tal iban outpost p o s i t i o n " .

579

Visual_object : Edge_1111113−111111
Type i s edge .
Source i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

584

Visual_object : Edge_11111131−1111113
Type i s edge .
Source i s " SF−S o l d i e r s changed b a t t e r i e s " .
Target i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .

589

Visual_object : Edge_111111311−111111311
Type i s edge .
Source i s " B a t t e r y of GPS r e c e i v e r died " .
Target i s " SF−S o l d i e r s changed b a t t e r i e s " .

594

Visual_object : Edge_1111114−111111
Type i s edge .
Source i s " F/A−18 s u c c e s s f u l l y ta rg e t ed Tal iban Outpost " .
Target i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .

599

Visual_object : Edge_11111141−1111114
Type i s edge .
Source i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Target i s " F/A−18 s u c c e s s f u l l y ta rg e t ed Tal iban Outpost " .

604

Visual_object : Edge_111111411−11111141
Type i s edge .
Source i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Target i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

609

Visual_object : Edge_1111114111−111111411
Type i s edge .
Source i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
Target i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .

614

Visual_object : Edge_111112−1111114111
Type i s edge .
Source i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Target i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
619

Visual_object : Edge_111112−11111
Type i s edge .
Source i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Target i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .

624

Visual_object : Edge_112−11
Type i s edge .
Source i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Target i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .

629

Visual_object : Edge_1111114111−11111141
Type i s edge .
Source i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
Target i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .

634

/ / ∗
∗

116 C. GOMSL MODEL OF THE NEW DESIGN

/ / The f a c t s
/ / ∗

∗

639 Visual_object : Fact1_2
Type i s f a c t .
Label i s " Accident : 3 SF−S o l d i e r s died and 20 wounded" .
Number i s " 1+2 " .

644 Visual_object : Fact3
Type i s f a c t .
Label i s " SF−S o l d i e r s h i t by 2k−pound s a t e l l i t e guided bomb" .
Number i s " 3 " .

649 Visual_object : Fact4
Type i s f a c t .
Label i s " SF−S o l d i e r s aquired Tal iban Outpost p o s i t i o n with GPS t a r g e t t i n g

device " .
Number i s " 4 " .

654 Visual_object : Fact5
Type i s f a c t .
Label i s " SF−S o l d i e r s c a l l e d f o r f i r s t a i r s t r i k e " .
Number i s " 5 " .

659 Visual_object : Fact6
Type i s f a c t .
Label i s " F/A−18 responded to f i r s t c a l l f o r a i r s t r i k e " .
Number i s " 6 " .

664 Visual_object : Fact7
Type i s f a c t .
Label i s " F/A−18 s u c c e s s f u l l y tar ge t e d Tal iban Outpost " .
Number i s " 7 " .

669 Visual_object : Fact8
Type i s f a c t .
Label i s " B a t t e r y of GPS r e c e i v e r died " .
Number i s " 8 " .

674 Visual_object : Fact9
Type i s f a c t .
Label i s " SF−S o l d i e r s changed b a t t e r i e s " .
Number i s " 9 " .

679 Visual_object : Fact10
Type i s f a c t .
Label i s "GPS r e i n i t s with own p o s i t i o n a f t e r power outage " .
Number i s " 10 " .

684 Visual_object : Fact11
Type i s f a c t .
Label i s " Tal iban Outpost p o s i t i o n and SF−S o l d i e r s P o s i t i o n d i f f e r only in

seconds of l a t /long " .
Number i s " 11 " .

689 Visual_object : Fact12
Type i s f a c t .
Label i s " SF−S o l d i e r s could not t e l l the d i f f e r e n c e between own p o s i t i o n and

Tal iban outpost p o s i t i o n " .
Number i s " 12 " .

694 Visual_object : Fact13

117

Type i s f a c t .
Label i s " SF−S o l d i e r s were not aware on GPS r e i n i t i a l i s a t i o n procedures " .
Number i s " 13 " .

699 Visual_object : Fact14
Type i s f a c t .
Label i s " SF−S o l d i e r s be l ieved GPS−coords to be Tal iban Outpost " .
Number i s " 14 " .

704 Visual_object : Fact15
Type i s f a c t .
Label i s " SF−S o l d i e r s c a l l e d in second a i r s t r i k e " .
Number i s " 15 " .

709 Visual_object : Fact16
Type i s f a c t .
Label i s "B−52 responded to c a l l f o r a i r s t r i k e from SF−S o l d i e r s " .
Number i s " 16 " .

714 Visual_object : Fact17
Type i s f a c t .
Label i s "B−52 ta rge te d SF−S o l d i e r s p o s i t i o n " .
Number i s " 17 " .

719 Visual_object : Fact18
Type i s f a c t .
Label i s "B−52 r e l e a s e d s a t e l l i t e guided bomb" .
Number i s " 18 " .

724 Visual_object : Fact19
Type i s f a c t .
Label i s " SF−S o l d i e r s wanted to a t t a c k Tal iban Outpost " .
Number i s " 19 " .

729 Visual_object : Fact20
Type i s f a c t .
Label i s "GPS coordinate r e p r e s e n t a t i o n " .
Number i s " 20 " .

734 / /
∗∗∗

/ / Top L e v e l Methods
/ /

∗∗∗

/ / ∗
∗

739 / / C r e a t e WB−Graph :
/ / t h i s method i s used t o g e t t h e t a s k s d e s c r i b e d a b o v e done one by one
/ / ∗

∗

Method_for_goal : Create wb_graph
744 Step 1 . Store Task1 under <current_task_name > .

Step 2 . Decide :
I f <current_task_name > i s None , Then

Delete <current_ task > ;
Delete <current_task_name > ;

749 Return_with_goal_accomplished .
Step 3 . Get_task_item_whose Name i s <current_task_name >

and_store_under <current_ task > .

118 C. GOMSL MODEL OF THE NEW DESIGN

Step 4 . Accomplish_goal : Perform graph_act ions .
Step 5 . Store Next of <current_ task > under <current_task_name > .

754 Step 6 . Goto 2 .

/ / ∗
∗

/ / Per form Graph A c t i o n s :
/ / t h e s e l e c t i o n r u l e t h a t d e t e r m i n e s t h e method t o be i n v o k e d due t o t h e

759 / / c u r r e n t t a s k ’ s g o a l .
/ / ∗

∗

Selec t ion_rules_for_goal : Perform graph_act ions
I f Type of <current_ task > i s add_new_node , Then

764 Accomplish_goal : Add node using
Label of <current_ task > , and canvas , and " Graph " .

I f Type of <current_ task > i s add_ncf , Then
Accomplish_goal : Add node using

Label of <current_ task > , and node , and Parent of <current_ task > .
769 I f Type of <current_ task > i s delete_node , Then

Accomplish_goal : Remove node using
Label of <current_ task > .

I f Type of <current_ task > i s i n s e r t _ n c f , Then
Accomplish_goal : I n s e r t node using

774 Parent of <current_ task > , and Label of <current_ task > ,
and Child1 of <current_ task > , and Child2 of <current_ task > ,
and Child3 of <current_ task > , and Child4 of <current_ task > .

I f Type of <current_ task > i s merge_nodes , Then
Accomplish_goal : Merge nodes using

779 Label1 of <current_ task > , and Label2 of <current_ task > ,
and New of <current_ task > .

I f Type of <current_ task > i s sp l i t_node , Then
Accomplish_goal : S p l i t node using

Label of <current_ task > , and New_label1 of <current_ task > ,
784 and New2 of <current_ task > , and Child1 of <current_ task > ,

and Child2 of <current_ task > , and Child3 of <current_ task > ,
and Child4 of <current_ task > , and Parent1 of <current_ task > ,
and Parent2 of <current_ task > , and Parent3 of <current_ task > ,
and Parent4 of <current_ task > .

789 I f Type of <current_ task > i s a l t e r _ n o d e _ d e s c r i p t i o n , Then
Accomplish_goal : Change a t t r i b u t e using

node , and " Descr ip t ion " , and a l t e r ,
and Label of <current_ task > , and New of <current_ task > .

I f Type of <current_ task > i s extend_node_descr ipt ion , Then
794 Accomplish_goal : Change a t t r i b u t e using

node , and " Descr ip t ion " , and xtend ,
and Label of <current_ task > , and Extension of <current_ task > .

I f Type of <current_ task > i s a l t e r _ n o d e _ r e f e r e n c e , Then
Accomplish_goal : Change a t t r i b u t e using

799 node , and "Node Reference " , and a l t e r ,
and Label of <current_ task > , and New of <current_ task > .

I f Type of <current_ task > i s extend_node_reference , Then
Accomplish_goal : Change a t t r i b u t e using

node , and "Node Reference " , and xtend ,
804 and Label of <current_ task > , and Extension of <current_ task > .

I f Type of <current_ task > i s add_edge , Then
Accomplish_goal : Add edge using

Source of <current_ task > , and Target of <current_ task > .
I f Type of <current_ task > i s a l t e r _ e d ge , Then

809 Accomplish_goal : Alter Edge using
Change of <current_ task > , and Source of <current_ task > ,
and Target of <current_ task > , and New of <current_ task > .

I f Type of <current_ task > i s delete_edge , Then

119

Accomplish_goal : Remove edge using
814 Source of <current_ task > , and Target of <current_ task > .

I f Type of <current_ task > i s add_fact , Then
Accomplish_goal : Add f a c t using

Descr ipt ion of <current_ task > .
I f Type of <current_ task > i s d e l e t e _ f a c t , Then

819 Accomplish_goal : Remove f a c t using
Label of <current_ task > .

I f Type of <current_ task > i s a l t e r _ f a c t _ d e s c r i p t i o n , Then
Accomplish_goal : Change a t t r i b u t e using

f a c t , and " Descr ip t ion " , and a l t e r ,
824 and Label of <current_ task > , and New of <current_ task > .

I f Type of <current_ task > i s e x t e n d _ f a c t _ d e s c r i p t i o n , Then
Accomplish_goal : Change a t t r i b u t e using

f a c t , and " Descr ip t ion " , and xtend ,
and Label of <current_ task > , and Extension of <current_ task > .

829 I f Type of <current_ task > i s determine_fac t , Then
Accomplish_goal : Determine f a c t .

Return_with_goal_accomplished .

/ /
∗∗∗

834 / / Graph O p e r a t i o n s
/ /

∗∗∗

/ / ∗
∗

/ / Change P ar en t :
839 / / change t h e t a r g e t o f t h e e d g e s be tween nodes wi th t h e g i v e n s o u r c e l a b e l s

/ / and t h e t a r g e t p a r e n t t o t h e new p a r e n t node
/ / f i n i s h e d .
/ / ∗

∗

844 Method_for_goal : Change parent using
<cp_old_parent > , and <cp_new_parent > , and <cp_child1 > ,
and <cp_child2 > , and <cp_child3 > , and <cp_child4 >

Step 1 . Decide :
I f <cp_child1 > i s n i l , Then

849 Goto 6 ;
I f <cp_child2 > i s n i l , Then

Goto 5 ;
I f <cp_child3 > i s n i l , Then

Goto 4 ;
854 I f <cp_child4 > i s n i l , Then

Goto 3 .
Step 2 . Accomplish_goal : Alter edge using

<cp_child4 > , and <cp_old_parent > ,
and arrow , and <cp_new_parent > .

859 Step 3 . Accomplish_goal : Alter edge using
<cp_child3 > , and <cp_old_parent > ,
and arrow , and <cp_new_parent > .

Step 4 . Accomplish_goal : Alter edge using
<cp_child2 > , and <cp_old_parent > ,

864 and arrow , and <cp_new_parent > .
Step 5 . Accomplish_goal : Alter edge using

<cp_child1 > , and <cp_old_parent > ,
and arrow , and <cp_new_parent > .

Step 6 . Return_with_goal_accomplished .
869

120 C. GOMSL MODEL OF THE NEW DESIGN

/ / ∗
∗

/ / Change C h i l d :
/ / change t h e s o u r c e o f t h e e d g e s be tween nodes wi th t h e g i v e n t a r g e t l a b e l s
/ / and t h e s o u r c e c h i l d node t o t h e new c h i l d node

874 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Change c h i l d using
<cc_old_chi ld > , and <cc_new_child > ,

879 and <cc_parent1 > , and <cc_parent2 > ,
and <cc_parent3 > , and <cc_parent4 >

Step 1 . Decide :
I f <cc_parent1 > i s n i l , Then

Goto 6 ;
884 I f <cc_parent2 > i s n i l , Then

Goto 5 ;
I f <cc_parent3 > i s n i l , Then

Goto 4 ;
I f <cc_parent4 > i s n i l , Then

889 Goto 3 .
Step 2 . Accomplish_goal : Alter edge using

<cc_old_chi ld > , and <cc_parent4 > ,
and t a i l , and <cc_new_child > .

Step 3 . Accomplish_goal : Alter edge using
894 <cc_old_chi ld > , and <cc_parent3 > ,

and t a i l , and <cc_new_child > .
Step 4 . Accomplish_goal : Alter edge using

<cc_old_chi ld > , and <cc_parent2 > ,
and t a i l , and <cc_new_child > .

899 Step 5 . Accomplish_goal : Alter edge using
<cc_old_chi ld > , and <cc_parent1 > ,
and t a i l , and <cc_new_child > .

Step 6 . Return_with_goal_accomplished .

904 / / ∗
∗

/ / Add as Par en t :
/ / add e d g e s d i r e c t i n g from t h e g i v e n c h i l d nodes t o t h e p a r e n t node
/ / f i n i s h e d .
/ / ∗

∗
909

Method_for_goal : Add_as parent using
<aap_parent > , and <aap_child1 > ,
and <aap_child2 > , and <aap_child3 > ,
and <aap_child4 >

914 Step 1 . Decide :
I f <aap_child1 > i s n i l , Then

Goto 6 ;
I f <aap_child2 > i s n i l , Then

Goto 5 ;
919 I f <aap_child3 > i s n i l , Then

Goto 4 ;
I f <aap_child4 > i s n i l , Then

Goto 3 .
Step 2 . Accomplish_goal : Add edge using

924 <aap_child4 > , and <aap_parent > .
Step 3 . Accomplish_goal : Add edge using

<aap_child3 > , and <aap_parent > .
Step 4 . Accomplish_goal : Add edge using

<aap_child2 > , and <aap_parent > .

121

929 Step 5 . Accomplish_goal : Add edge using
<aap_child1 > , and <aap_parent > .

Step 6 . Return_with_goal_accomplished .

/ / ∗
∗

934 / / Add as C h i l d :
/ / add e d g e s d i r e c t i n g form t h e c h i l d node t o t h e g i v e n p a r e n t nodes
/ / f i n i s h e d .
/ / ∗

∗

939 Method_for_goal : Add_as c h i l d using
<aac_chi ld > , and <aac_parent1 > ,
and <aac_parent2 > , and <aac_parent3 > ,
and <aac_parent4 >

Step 1 . Decide :
944 I f <aac_parent1 > i s n i l , Then

Goto 6 ;
I f <aac_parent2 > i s n i l , Then

Goto 5 ;
I f <aac_parent3 > i s n i l , Then

949 Goto 4 ;
I f <aac_parent4 > i s n i l , Then

Goto 3 .
Step 2 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent4 > .
954 Step 3 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent3 > .
Step 4 . Accomplish_goal : Add edge using

<aac_chi ld > , and <aac_parent2 > .
Step 5 . Accomplish_goal : Add edge using

959 <aac_chi ld > , and <aac_parent1 > .
Step 6 . Return_with_goal_accomplished .

/ /
∗∗∗

/ / Node O p e r a t i o n s
964 / /

∗∗∗

/ / ∗
∗

/ / Add Node / N e c e s s a r y Causa l F a c t o r (NCF) :
/ / drag f a c t t o p a r e n t

969 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Add node using
<an_fact > , <an_ptype > , and <an_parent >

974 Step 1 . Accomplish_goal : Drag item using
f a c t , and <an_fact > , and n i l ,
and <an_ptype > , and <an_parent > , and n i l .

Step 2 . Return_with_goal_accomplished .

979 / / ∗
∗

/ / Remove Node :
/ / drag node t o t r a s h
/ / f i n i s h e d .

122 C. GOMSL MODEL OF THE NEW DESIGN

/ / ∗
∗

984

Method_for_goal : Remove node using
<rm_label >

Step 1 . Accomplish_goal : Drag item using
node , and <rm_label > , and n i l ,

989 and t r a s h , and " Trash " , and n i l .
Step 2 . Return_with_goal_accomplished .

/ / ∗
∗

/ / I n s e r t Node : (b e tween p a r e n t node and one or more o p t i o n a l c h i l d nodes)
994 / / drag f a c t t o t h e edge be tween p a r e n t and c h i l d node

/ / a l t e r e d g e s be tween p a r e n t node and g i v e n c h i l d nodes : new p a r e n t i s new
node

/ / f i n i s h e d .
/ / ∗

∗

999 Method_for_goal : I n s e r t node using
<in_parent > , and < i n _ l a b e l > ,
and <in_chi ld1 > , and <in_chi ld2 > ,
and <in_chi ld3 > , and <in_chi ld4 >

Step 1 . Accomplish_goal : Drag item using
1004 node , and < i n _ l a b e l > , and n i l ,

and edge , and <in_chi ld1 > , and <in_parent > .
Step 2 . Accomplish_goal : Change parent using

<in_parent > , and < i n _ l a b e l > ,
and <in_chi ld2 > , and <in_chi ld3 > ,

1009 and <in_chi ld4 > , and n i l .
Step 3 . Return_with_goal_accomplished .

/ / ∗
∗

/ / Merge Nodes : (t a k e c a r e o f c o r r e s p o n d i n g v i s u a l o b j e c t s !)
1014 / / s e l e c t t h e nodes t o merge f i e l d

/ / drag s e l e c t i o n t o merge f i e l d
/ / change t h e node d e s c r i p t i o n
/ / f i n i s h e d .
/ / ∗

∗
1019

Method_for_goal : Merge nodes using
<mn_label1 > , and <mn_label2 > , and <mn_new_label>

Step 1 . Accomplish_goal : S e l e c t i tems .
Step 2 . Accomplish_goal : Drag item using

1024 s e l e c t i o n , and n i l , and n i l ,
and f i e l d , and " Merge " , and n i l .

Step 3 . Accomplish_goal : Change a t t r i b u t e n using
node , and " Descr ip t ion " ,
and xtend , and <mn_label1 > ,

1029 and <new_label > .
Step 4 . Return_with_goal_accomplished .

/ / ∗
∗

/ / S p l i t Node : (t a k e c a r e o f c o r r e s p o n d i n g v i s u a l o b j e c t s !)
1034 / / drag node t o s p l i t t o s p l i t f i e l d

/ / t y p e in t h e l a b e l o f t h e new s i b l i n g node
/ / change t h e s o u r c e node d e s c r i p t i o n
/ / add e d g e s be tween g i v e n c h i l d nodes : new p a r e n t i s new node
/ / add e d g e s be tween g i v e n p a r e n t nodes : new c h i l d i s new node

123

1039 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : S p l i t node using
<sn_labe l > , and <sn_new_label1 > , and <sn_new_label2 > ,

1044 and <sn_chi ld1 > , and <sn_chi ld2 > , and <sn_chi ld3 > ,
and <sn_chi ld4 > , and <sn_parent1 > , and <sn_parent2 > ,
and <sn_parent3 > , and <sn_parent4 >

Step 1 . Accomplish_goal : Drag item using
node , and <sn_labe l > , and n i l ,

1049 and f i e l d , and " S p l i t " , and n i l .
Step 2 . Type_in <sn_new_label1 > .
Step 3 . Accomplish_goal : Change a t t r i b u t e using

node , and " Descr ipt ion " ,
and a l t e r , and "New Node" ,

1054 and <sn_new_label2 > .
Step 4 . Accomplish_goal : Add_as c h i l d using

<sn_new_label2 > , and <sn_parent1 > ,
and <sn_parent2 > , and <sn_parent3 > ,
and <sn_parent4 > .

1059 Step 5 . Accomplish_goal : Add_as parent using
<sn_new_label2 > , and <sn_chi ld1 > ,
and <sn_chi ld2 > , and <sn_chi ld3 > ,
and <sn_chi ld4 > .

Step 6 . Return_with_goal_accomplished .
1064

/ /
∗∗∗

/ / A t t r i b u t e O p e r a t o r s
/ /

∗∗∗

1069 / / ∗
∗

/ / Change A t t r i b u t e :
/ / c l i c k node or f a c t t o be changed
/ / i f t h e d e s c r i p t i o n i s not t o be changed , s e l e c t t h e c o r r e s p o n d i n g i n p u t

f i e l d
/ / i f t h e t x t s h a l l be r e p l a c e d , t y p e d e l e t e key

1074 / / e n t e r t h e node d e s c r i p t i o n
/ / c o n f i r m t h e change by h i t t i n g t h e ’ r e turn ’− key
/ / f i n i s h e d .
/ / ∗

∗

1079 Method_for_goal : Change a t t r i b u t e using
<ct_type > , and < c t _ a t t r i b u t e > , and <ct_a_or_x > ,
and < c t _ o r i g i n a l > , and <ct_new>

Step 1 . Accomplish_goal : C l i c k _ a t item using
<ct_type > , and < c t _ o r i g i n a l > , and n i l .

1084 Step 2 . Decide :
I f < c t _ a t t r i b u t e > i s_not " Descr ipt ion " , Then

Accomplish_goal : C l i c k _ a t item using
i n p u t _ f i e l d , and < c t _ a t t r i b u t e > , and n i l .

Step 3 . Decide :
1089 I f <ct_a_or_x > i s a l t e r , Then

Keystroke DEL .
Step 4 . Type_in <ct_new_label > .
Step 5 . Keystroke CR .
Step 6 . Return_with_goal_accomplished .

124 C. GOMSL MODEL OF THE NEW DESIGN

1094

/ /
∗∗∗

/ / Edge O p e r a t i o n s
/ /

∗∗∗

1099 / / ∗
∗

/ / Add Edge :
/ / drag from t h e s o u r c e node t o t h e t a r g e t n o d e
/ / f i n i s h e d .
/ / ∗

∗
1104

Method_for_goal : Add edge using
<ae_source > , and <ae_target >

Step 1 . Accomplish_goal : Drag item using
node , and <ae_source > , and n i l ,

1109 and node , and <ae_targe t > , and n i l .
Step 2 . Return_with_goal_accomplished .

/ / ∗
∗

/ / A l t e r Edge :
1114 / / drag t h e edge t o t h e new c h i l d / p a r e n t

/ / (method dos not d i s t i n g u i s h t h e change o f s o u r c e or t a r g e t o f an edge
b e c a u s e

/ / o f t h e way g l e a n 3 impl ements f i t t ’ s law)
/ / f i n i s h e d .
/ / ∗

∗
1119

Method_for_goal : Alter edge using
<ale_source > , and < a l e _ t a r g e t > ,
and <ale_end > , and <ale_new>

Step 1 . Accomplish_goal : Drag item using
1124 edge , and <ale_source > , and < a l e _ t a r g e t > ,

and node , and <ale_new> , and n i l .
Step 2 . Return_with_goal_accomplished .

/ / ∗
∗

1129 / / Remove Edge :
/ / drag edge t o t r a s h
/ / f i n i s h e d .
/ / ∗

∗

1134 Method_for_goal : Remove edge using
<rme_source > , and <rme_target >

Step 1 . Accomplish_goal : Drag item using
edge , and <rme_source > , and <rme_target > ,
and t r a s h , and " Trash " , and n i l .

1139 Step 2 . Return_with_goal_accomplished .

/ /
∗∗∗

/ / L i s t o f F a c t s O p e r a t i o n s
/ /

125

∗∗∗

1144

/ / ∗
∗

/ / Add F a c t :
/ / s e l e c t no f a c t by c l i c k i n g t h e canvas
/ / e n t e r t h e f a c t d e s c r i p t i o n

1149 / / t y p e r e t u r n key
/ / f i n i s h e d .
/ / ∗

∗

Method_for_goal : Add f a c t using
1154 < a f _ d e s c r i p t i o n >

Step 1 . Accomplish_goal : C l i c k _ a t item using l i s t , and " L i s t of F ac t s " , n i l .
Step 2 . Type_in < a f _ d e s c r i p t i o n > .
Step 3 . Keystroke CR .
Step 4 . Return_with_goal_accomplished .

1159

/ / ∗
∗

/ / Remove F a c t :
/ / drag f a c t t o t r a s h
/ / f i n i s h e d .

1164 / / ∗
∗

Method_for_goal : Remove f a c t using
<df_descr ip t ion >

Step 1 . Accomplish_goal : Drag item using
1169 f a c t , and <df_descr ip t ion > , and n i l ,

and t r a s h , and " Trash " , and n i l .
Step 2 . Return_with_goal_accomplished .

/ / ∗
∗

1174 / / Determine F a c t :
/ / f i n d nex t f a c t (dummy : a v e r i f y o p e r a t o r which consumes s e a r c h / d e c i s i o n t ime

)
/ / f i n i s h e d .
/ / ∗

∗

1179 Method_for_goal : Determine f a c t
Step 1 . Verify " Find the f a c t t h a t i s causa l f a c t o r " .
Step 2 . Return_with_goal_accomplished .

/ /
∗∗∗

1184 / / B a s i c O p e r a t i o n s
/ /

∗∗∗

/ / ∗
∗

/ / Look f o r I t em :
1189 / / f i n d t h e i t em

/ / ∗
∗

126 C. GOMSL MODEL OF THE NEW DESIGN

Method_for_goal : Look_for item using
< l f i _ t y p e > , and < l f i _ s p e c 1 > , and < l f i _ s p e c 2 >

1194 Step 1 . Decide :
I f < l f i _ t y p e > i s edge , Then

Look_for_object_whose Type i s < l f i _ t y p e > ,
and Source i s < l f i _ s p e c 1 > , and Target i s < l f i _ s p e c 2 >
and_store_under <o b j e c t > ;

1199 Else
Look_for_object_whose Type i s < l f i _ t y p e > , and Label i s < l f i _ s p e c 1 >
and_store_under <o b j e c t > .

Step 2 . Return_with_goal_accomplished .

1204 / / ∗
∗

/ / C l i c k a t I t em :
/ / f i n d t h e i t em
/ / p o i n t t o t h e i t em
/ / c l i c k t h e mouse b u t t o n

1209 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : C l i c k _ a t item using
<cai_type > , and <cai_spec1 > , and <cai_spec2 >

1214 Step 1 . Accomplish_goal : Look_for item using <cai_type > , and <cai_spec1 > , and
<cai_spec2 > .

Step 2 . Point_ to <o b j e c t > .
Step 3 . Click mouse_button .
Step 4 . Delete <o b j e c t > ; Return_with_goal_accomplished .

1219 / / ∗
∗

/ / Drag i t em :
/ / f i n d t h e i t em
/ / p o i n t t o t h e i t em
/ / h o l d down t h e mouse b u t t o n

1224 / / f i n d t h e t a r g e t
/ / p o i n t t o t h e t a r g e t
/ / r e l e a s e t h e mouse b u t t o n
/ / f i n i s h e d .
/ / ∗

∗
1229

Method_for_goal : Drag item using
<di_stype > , and <di_sspec1 > , and <di_sspec2 > ,
and <di_t type > , and <di_tspec1 > , and <di_tspec2 >

Step 1 . Accomplish_goal : Look_for item using <di_stype > , and <di_sspec1 > , and
<di_sspec2 > .

1234 Step 2 . Point_ to <o b j e c t > .
Step 3 . Hold_down mouse_button .
Step 4 . Accomplish_goal : Look_for item using <di_t type > , and <di_tspec1 > , and

<di_tspec2 > .
Step 5 . Point_ to <o b j e c t > .
Step 6 . Release mouse_button .

1239 Step 7 . Delete <o b j e c t > ; Return_with_goal_accomplished .

/ / ∗
∗

/ / S e l e c t i t e m s :
/ / (c l i c k & drag on t h e canvas , where t o s t a r t and t o s t o p i s not o f i m p o r t a n c e

,
1244 / / b e c a u s e t h e f i t t ’ s law i m p l e m e n t a t i o n)

/ / p o i n t t o t h e canvas

127

/ / h o l d down mouse b u t t o n
/ / move mouse (p o i n t i n g a g a i n t o t h e canvas)
/ / r e l e a s e mouse b u t t o n

1249 / / f i n i s h e d .
/ / ∗

∗

Method_for_goal : S e l e c t i tems
Step 1 . Look_for_object_whose Type i s canvas and_store_under < s i _ o b j e c t > .

1254 Step 2 . Point_ to < s i _ o b j e c t > .
Step 3 . Hold_down mouse_button .
Step 4 . Look_for_object_whose Label i s canvas and_store_under < s i _ o b j e c t > .
Step 5 . Point_ to < s i _ o b j e c t > .
Step 6 . Release mouse_button .

1259 Step 7 . Delete < s i _ o b j e c t > ; Return_with_goal_accomplished .

128 C. GOMSL MODEL OF THE NEW DESIGN

Bibliography

[Annett 67] John Annett & Keith Duncan. Task Analysis and Training De-
sign. Occupational Psychology, vol. 41, pages 211–221, 1967.

[Baumeister 00] Lynn K. Baumeister, Bonnie E. John & Michael D. Byrne. A
comparison of tools for building GOMS models. In Proceedings
of the SIGCHI conference on Human factors in computing
systems, pages 502–509. ACM Press, 2000.

[Card 80] Stuart K. Card, Thomas P. Moran & Allen Newell. The
keystroke-level model for user performance time with interactive
systems. Communications of the ACM, vol. 23, no. 7, pages
396–410, 1980.

[Card 83] Stuart K. Card, Allen Newell & Thomas P. Moran. The psy-
chology of human-computer interaction. Lawrence Erlbaum
Associates, Inc., 1983.

[Cooper 95] Alan Cooper. About face: The essentials of user interface de-
sign. IDG Books Worldwide, Inc., Foster City, CA, USA, 1995.

[Dix 98] Alan Dix, Janet Finlay, Gregory Abowd & Russell Beale. Hu-
man computer interaction (second edition). Prentice Hall,
1998.

[Freed 03] Michael A. Freed, Michael Matessa, Roger Remington &
Alonso Vera. How Apex Automates CPM-GOMS. In Fifth In-
ternational Conference on Cognitive Modeling, April 2003.

[Freed 04] Michael A. Freed. Apex Homepage: Usable Autonomy.
http://human-factors.arc.nasa.gov/apex/index.html, 2004.

[Frohlich 97] David M. Frohlich. Direct Manipulation and other Lessons. In
Handbook of Human Computer Interaction. Elsevier, 1997.

[Gray 92] Wayne D. Gray, Bonnie E. John & Michael E. Atwood. The pre-
cis of Project Ernestine or an overview of a validation of GOMS. In

129

130 BIBLIOGRAPHY

CHI ’92: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 307–312. ACM Press,
1992.

[Hackos 98] JoAnn T. Hackos & Janice C. Redish. User and task analysis
for interface design. John Wiley & Sons, Inc., New York, New
York, USA, 1998.

[Hennig 03] Jan E. Hennig. Konzeption eines verteilten Datenar-
chivierungssystems. Master’s thesis, Universität Bielefeld,
http://www.rvs.uni-bielefeld.de, RVS-Dip-03-01, September
2003.

[John 88] Bonnie E. John. Contributions to Engineering Models of human-
computer interaction. PhD thesis, Carnegie Mellon University,
1988.

[John 95a] Bonnie John. Why GOMS? Interactions, vol. 2, no. 4, pages
80–89, 1995.

[John 95b] Bonnie E. John & Wayne D. Gray. CPM-GOMS: an analysis
method for tasks with parallel activities. In CHI ’95: Conference
companion on Human factors in computing systems, pages
393–394. ACM Press, 1995.

[John 96] Bonnie E. John & David E. Kieras. Using GOMS for user inter-
face design and evaluation: which technique? ACM Transactions
on Computer-Human Interaction, vol. 3, no. 4, pages 287–319,
1996.

[John 02] Bonnie John, Alonso Vera, Michael Matessa, Michael Freed &
Roger Remington. Automating CPM-GOMS. In Proceedings
of the SIGCHI conference on Human factors in computing
systems, pages 147–154. ACM Press, 2002.

[Jonassen 89] David H. Jonassen, Wallace H. Hannum & Martin Tessmer.
Handbook of task analysis procedures. Praeger Publishers,
Westport, CT, USA, 1989.

[Kandel 00] Eric R. Kandel, James H. Schwartz & Thomas M. Jessel. Prin-
ciples of neural science. Appleton & Lange, 4. edition, 2000.

[Kieras 85] David E. Kieras & Peter G. Polson. An approach to the for-
mal analysis of user complexity. International Journal of Man-
Machine Studies, vol. 22, pages 365–394, 1985.

BIBLIOGRAPHY 131

[Kieras 88] David E. Kieras. Towards a Practical GOMS Model Methodology
for User Interface Design. In Handbook of Human-Computer
Interaction. North-Holland, New York, NY, 1988.

[Kieras 95] David E. Kieras, Scott D. Wood, Kasem Abotel & Anthony
Hornof. GLEAN: a computer-based tool for rapid GOMS model
usability evaluation of user interface designs. In Proceedings of
the 8th annual ACM symposium on User interface and soft-
ware technology, pages 91–100. ACM Press, 1995.

[Kieras 96] David E. Kieras. A Guide to GOMS Model Usability Evaluation
using NGOMSL, 1996.

[Kieras 97a] David E. Kieras. GOMS Model Usability Evaluation Using
NGOMSL. In Handbook of Human Computer Interaction.
Elsevier, 1997.

[Kieras 97b] David E. Kieras & David E. Meyer. An Overview of the EPIC
Architecture for Cognition and Performance With Application to
Human-Computer Interaction. Human-Computer Interaction,
vol. 12, no. 4, pages 391–438, 1997.

[Kieras 99] David E. Kieras. A Guide to GOMS Model Usability Evaluation
using GOMSL and GLEAN3. University of Michigan, January
1999.

[Kieras 04] David E. Kieras & Thomas P. Santoro. Computational GOMS
modeling of a complex team task: lessons learned. In Proceedings
of the 2004 conference on Human factors in computing sys-
tems, pages 97–104. ACM Press, 2004.

[Kieras 05] David E. Kieras. GOMS Models: An Approach to Rapid Usability
Evaluation. http://www.eecs.umich.edu/˜kieras/goms.html,
2005.

[Kirwan 92] Barry Kirwan & Les K. Ainsworth. A guide to task analysis.
Taylor & Francis Ltd., London, England, 1992.

[Ladkin 99] Peter B. Ladkin. A Quick Introduction to Why-Because Analysis.
http://www.rvs.uni-bielefeld.de, March 1999.

[Ladkin 01] Peter B. Ladkin & Karsten Loer. Why-Because Analysis:
Formal reasoning about incidents. http://www.rvs.uni-
bielefeld.de, RVS-Bk-01-01, 2001.

132 BIBLIOGRAPHY

[Ladkin 03] Peter B. Ladkin, Lars Heidiecker, Nils Hoffmann, Pe-
ter Husemann, Jan Paller, Jan Sanders, Jörn Stuphorn &
Andreas Vangerow. WBA of the Royal Majesty Accident.
http://www.rvs.uni-bielefeld.de, RVS-RR-03-01, July 2003.

[Ladkin 05] Peter B. Ladkin. Networks and distributed Systems Homepage.
http://www.rvs.uni-bielefeld.de, 2005.

[Loer 98] Karsten Loer. Towards "Why...Because"-Analysis of failures.
Master’s thesis, Univerität Bielefeld, http://www.rvs.uni-
bielefeld.de, RVS-Dip-98-02, Februar 1998.

[Macaulay 95] Linda Macaulay. Human computer interaction for software
designers. Internat. Thomson Computer Press, 1995.

[Norman 88] Donald A. Norman. The design of everyday things. Double-
day Press, New York, 1988.

[Raskin 00] Jef Raskin. Humane interface: New directions for designing
interactive systems. Addison-Wesley Publishing, 2000.

[Schulmeister 97] Rolf Schulmeister. Grundlagen hypermedialer Lernsysteme.
Theorie - Didaktik - Design. Oldenbourg Verlag, Muenchen,
2. edition, 1997.

[Shneiderman 82] Ben Shneiderman. The Future of Interactive Systems and the
Emergence of Direct Manipulation. Behaviour and Information
Technology, vol. 1, no. 3, pages 237–256, 1982.

[Sieker 04] Bernd Sieker. Visualisation concepts and improved software
tools for Causal System Analysis. Master’s thesis, Universität
Bielefeld, http://www.rvs.uni-bielefeld.de, RVS-Dip-04-01,
February 2004.

