
Dependable Risk Analysis for Systems with
E/E/PE Components: Two Case Studies

Jörn Stuphorn, Bernd Sieker and Peter B. Ladkin

Causalis Limited

Bielefeld, Germany

Abstract

1 Introduction

There is a major question of how to perform an accurate risk analysis of systems
with software-based components (often subsumed under the rubric electrical/elec-
tronic/programmable-electronic, or E/E/PE systems). There is a consensus
amongst senior scientists and engineers, backed by rigorous statistical reasoning,
that developing systems by ‘the usual methods’ and testing to identify and elimi-
nate faults cannot attain the required dependability. Other methods are needed, and
again the consensus is that these methods must be rigorous, which means formal.
It is important that

 the methods connect with the usual methods used by system safety engineers,
and

 that they admit practical application to typical industrial examples.

Computer scientists have many formal methods at their disposal whose capabili-
ties are well-known, but which methods are not typically used in industrial devel-
opment, for various reasons, amongst them that they violate one of these two con-
ditions. We relate in this paper two case studies of how a particular approach, On-
tological Hazard Analysis (OHA, first proposed in under the name ‘Ontological
Analysis’ (Ladkin 2005)) can be used for risk assessment of E/E/PE systems.

The basis for OHA is to start with a very abstract requirements specification, of
a form which computer scientists are used to produce, in a semi-formally-con-
trolled language. This initial language L must be such that

2

 it is a formal language, containing names for objects, and symbols for proper-
ties of those objects and relations between them, i.e., it is a subset of the lan-
guage of predicate logic

 the set of all possible (non-equivalent) statements in the language is finite

 all users can agree on which of these statements state safety requirements, say
the set S

 the safety requirements identified can be seen to constitute a sufficient set

There is some skill involved in picking this first language, and the success of the
OHA method is dependent on a suitable choice. The finite set of non-equivalent
statements in L must also be small enough that engineers can consider them all,
and make judgements about them, in a reasonable period of time.

OHA proceeds from L and S by formal refinement, a well-known technique in
computer science but not one common amongst system safety engineers. The lan-
guage L is extended, by considering new objects, properties and relations which
express structure and behavior of the system in more detail, less abstractly. Let us
call this language L1. The concepts of L (objects, and especially properties and re-
lations) must be expressed in L1. The definitions of the concepts are known as
‘meaning postulates’. The safety requirements in S have their translations into L1,
producing say the set of requirements S1, and these are the safety requirements
that have to be assured. It may be necessary to introduce new requirements in L1
that guarantee (logically imply) the requirements in S1. Thus the set of safety re-
quirements in L1 is a set S1' which includes S1. This process is repeated as many
times as it takes to achieve the goals, which may be

 a system architecture, at, for example a source-code level, so that code may be
developed directly from the architecture

 a system architecture which allows standard methods of risk analysis to be ap-
plied

We call the successive languages levels. The initial language L is Level 0, its suc-
cessor L1 Level 1, and so on.

The important feature of the refinement process is the traceability it enables be-
tween initial, very abstract system functional definition and, in the end if all goes
well, the source-code-level design. This traceability eliminates much of the uncer-
tainty in the development process which leads to unreliability of the risk assess-
ment of the resulting system.

Good idea, but does it work? Many formal approaches do not pan out when ap-
plied to industrial examples. We have performed three OHAs on industrial exam-
ples. The three analyses were all very different in both style and formal techniques
used, but they were all successful in reducing risk assessment to generic methods,

3

and all used the same semi-controlled language/controlled refinement approach of
OHA.

1. The first author defined a generic communications-bus architecture applicable
to both CAN-bus and Flexray-based communications for road vehicles. The ini-
tial language in which the functional requirements were stated was moderately
complex. The refinements were achieved through applying HAZOP to the cur-
rent level, then performing a partial causal analysis of how these deviations
could occur (per deviation a mini-Why-Because-Graph, called an epWBG, was
created) and the vocabulary necessary for expressing these causal factors de-
fined the next level. The analysis was moderately complex, as he says. Howev-
er, the epWBGs could be easily converted into fault-tree representations, and
already at Level 2 the separate mini-fault trees resulting from the epWBGs
could be combined into a single fault tree, enabling the usual fault-tree risk-
analysis method of assigning probabilities to the leaf nodes and working one’s
way upwards through the tree. Thus the goal was accomplished of taking a
moderately-complex and realistic E/E/PE system and developing it to the point
at which state-of-the-practice risk analysis methods could be applied. Any
residual unreliability of such an analysis resides in the usual difficulties with
fault-tree analysis (the accuracy of the necessary probabilistic-independence as-
sumptions, for example) as well as in the confidence of the accuracy of the
derivation of the fault tree. (We admit a certain amount of laziness here – the
actual derivation of the fault tree was performed as a student project at the Uni-
versity of Bielefeld, where the third author teaches. Thus we confirmed that the
conversion is feasible, which was the point of the exercise, but we did not nec-
essarily arrive at a fault tree which we would trust!)

2. The second author attempted to derive a computer-based system for performing
the communications between train controller and drivers necessary for operat-
ing trains according to the German train-dispatching protocol for non-state-
owned railways. Train dispatching (German ‘Zugleitbetrieb’) is the common
means of operating trains on single-track lightly-used rail lines, which are com-
monly not equipped with signalling systems. The protocol is defined in a docu-
ment, the FV-NE, which is part of German administrative law. He started from
the obvious, overriding requirement for block-based train protection, that no
two different trains may occupy the same block at the same time except under
certain special circumstances. The Level 0 language required to express this is
astonishingly simple, and enabled a manual selection of safety requirements,
which is complete in the sense that they cannot be logically strengthened. Level
1 and further levels were defined through the usual type of refinement process
familiar to computer scientists, in which the extensions of the language were
carefully controlled in small steps. It proved to be possible to express the entire
functional operation of the system at each level in terms of a global finite-state
machine, and the state machines were formally proved to refine each other,
sometimes through addition of extra requirements which then become safety re-

4

quirements. The final step involved transforming the global state machine into
a set of communicating state machines, one representing a driver and one a
train controller, with message-passing. This was expressed in a structure called
a Message Flow Graph (MFG), for which the third author has defined a formal
semantics (Ladkin and Leue 1995), and thus the MFG could be formally proved
to implement the appropriate global state machine. The MFG agents were then
implemented as SPARK procedure skeletons with the appropriate annotations
by Phil Thornley of SparkSure, and the annotation proved to implement the
MFG. Thus the entire development ensured complete traceability between
very-high-level safety requirements and SPARK source code. Suppose such a
system were to be implemented as either an automated dispatching system,
with computers replacing the human agents, or, more practically, as a support
system which checks that the required steps have been performed by the human
agents. Then the risk of using the system resides entirely in the hardware and
communications systems used, as well as in the compiler used to compile the
source code, and in human factors such as whether the system is used as intend-
ed, and there is no residual risk inherent in the logic of the program design it-
self. The risk of this computer-based system has thereby been reduced to that of
other, generic risks, which data from other, unrelated projects may be used to
assess.

3. The first two authors have performed a security analysis for a configuration
control and downloading system for road vehicles with configurable compo-
nents based on generic hardware, in the European Commission Integrated
Project AC/DC, which involves a number of large European automobile and
component manufacturers. The secure downloading of a configuration from se-
cure manufacturer sources to a vehicle in the field is a vital component in the
process which the project is attempting to define and prototype. The authors
first defined a threat model, with which their project clients agreed, and then
using OHA derived a complete set of attack patterns and therefrom the attack
trees for this threat model. No other technique is known to us which could have
accomplished this in a checkably-reliable way. The total effort involved was
eighteen person-months, a non-trivial amount but still a low level of effort
when compared with the consequences of a successful attack. Since this exam-
ple concerns security and not safety, we do not consider it further here.

Conclusion. The field of E/E/PE safety lacks methods for performing risk analy-
sis on systems with software-based components in such a way that one may be
confident in the risk assessment. The technique OHA, based on expression of re-
quirements in semi-controlled language and formal refinement steps, allows the
risk assessment of an E/E/PE system to be based on generic state-of-the-practice
risk-assessment methods, in such a way that one may be as confident in the results
of an assessment as one is confident in these generic methods. The application of
OHA may be straightforward or more complex, but in our case studies on industri-

5

al examples it has lain within the range of the economically achievable. We thus
recommend its use.

Structure of the Paper. We have stated above the purpose and conclusions, as
well as briefly described the case studies concerning the use, of Ontological Haz-
ard Analysis. This constitutes, if you like, the ‘executive summary’ of the work.
The two following sections present some details of the first two case studies

2 First Case Study: OHA for an Automotive Communications
Bus System

Bus communication systems in road vehicles became useful with the integration
of increasing numbers of electronic devices. The multiplexing of these at first sep-
arated systems via a communications system enabled savings in weight, lower
costs of production, and greater design flexibility.

With emerging new areas of application such as X-by-Wire, communication
protocols supporting time-triggered communication are an increasingly common
sight in cars.

2.1 Initial System Description

Schematically, an integrated communication bus system in a car can be depicted
as shown in Figure 1. The operator of the vehicle gives input into the system using
steering wheel, pedals, shift box and other selector switches, of which the states
are assessed by sensors which provide input for network Nodes (NIC). These are
interconnected with a network bus by which information exchange is enabled.
Other Nodes process the available information and provide them to connected ac-
tuators with can then influence brakes, gear, inverter, transmission, etc.

6

Fig. 1. Integrated Communication Bus System

For the identification of hazards to the communication bus, the system is defined
to compass the nodes and the physical wiring of the network bus; all other ele-
ments are part of the environment.

2.2 Ontology of the initial system description

Based on the initial system-description three objects with ten properties and one
relation are identified. To avoid misunderstanding the meaning of each element of
the ontology is defined with the element in the tables below.

Table 1. Objects of the System

Object Description
NIC The Network Interface Controller. This is the interface between the input device

and the physical network.
Wiring The physical connection between the systems’ NICs. Transmission
Transmission The transport of information between NICs over the physical network.

Table 2.a. Properties of NIC

Property Description
Input The information received by the NIC
Output The information transmitted by the NIC
Intact The integrity of the NIC, whose absence prevents the NIC from working properly.

7

Table 2.b. Properties of Wiring

Property Description
Intact The integrity of the wiring, whose absence prevents the physical network from work-

ing properly.

Table 2.c. Properties of Transmission

Object Description
Size The size of the transmission
Deadline The latest possible point in time at which the transmission can be received without

loosing its value.
Period Frequency of the generation of a type of transmission
Mode The mode used for a transmission. This can be either time-triggered or event-triggered.
Latency The time it takes for the complete transmission of information over the network.
Jitter The variance in the transmission time of a multitude of same-typed transmissions.

Table 3. Relations of the System

Relation Description
Connection(Wiring, NIC) The feature of the NIC to be connected properly with the Wiring.

2.3 Guide-Word based Approach for Identification of Hazards

We used HAZOP’s guide-word-based approach to identify deviation because of its
systematic nature.

By combining the HAZOP guide-words with each element of the ontology, a
comprehensive list of possible deviations is generated. As usual in HAZOP, these
possible deviations now have to be interpreted for their impact and meaning in the
specific application. A number of these putative deviations can easily be dis-
missed, as certain guide-words may not make sense when applied to certain ele-
ments.

Table 4 HAZOP guide-words used and their interpretations

Guide-Word Source Interpretation
No RSC01 None of the design intent is achieved

RCC99 This is the complete negation of the design intention - No part of the inten-
tion is achieved but nothing else happens

More RSC01 Quantitative increase in a parameter
RCC99 This is a quantitative increase

Less RSC01 Quantitative decrease in a parameter
RCC99 This is a quantitative decrease

8

As well as RSC01 An additional activity occurs
RCC99 This is a qualitative increase, where all the design intention is achieved to-

gether with additional activity
Part of RSC01 Only some of the design intention is achieved

RCC99 This is a qualitative decrease, where only part of the design intention is
achieved

Reverse RSC01 Logical opposite of the design intention occurs
RCC99 This is the logical opposite of the intention

Other than RSC01 Complete substitution. Another activity takes place
RCC99 This is a complete substitution, where no part of the original intention is

achieved but something quite different happens
Early RSC01 The timing different from the intention

RCC99 Something happens earlier in time than intended
Late RSC01 The timing different from the intention

RCC99 Something happens later in time than intended
Before RSC01 The step (or some part of it) is effected out of sequence

RCC99 Something happens earlier in a sequence than intended
After RSC01 The step (or some part of it) is effected out of sequence

RCC99 Something happens later in a sequence than intended
Faster RSC01 The step is done with the right timing
Slower RSC01 The step is not done with the right timing
Where else RSC01 Applicable for flows, transfers, sources and destinations
The list of guide-words shown in Table 4 is a combination of guide-words pro-
posed by the Royal Society of Chemistry (Hazell et al. 2001) and (Redmill et al.
1999).

Overall our system ontology for the initial system description comprises 14 ele-
ments and the set of guide-words 13 elements. The combination of elements with
guide-words produced 182 possible deviations which were reduced by the inter-
pretation process down to 59 meaningful deviations, a reduction of about 67%.

2.4 Formalisation of Deviations by Usage of Ontology

The systematic generation of deviations produces some equivalent deviations in
varying wording. Such deviations do not have to be analysed more than once, but
can be difficult to identify. We accomplished this by expressing the deviations
semi-formally using the vocabulary of the ontology. E.g. the deviation ‘Informa-
tion is reversely transmitted’ can be expressed by the formula ‘Output(NIC) = IN-
VERSE(Input(NIC))’. Equivalences are much easier to see using the semi-formal
mathematical-style language.

As a side effect, this formalisation helps to identify missing elements in the on-
tology, which can then be included to enable the expression of further deviations.

9

In the step from the initial system description and ontology to the first refined ver-
sion, this led to an additional 3 objects, 21 properties and 1 relation. The refine-
ment to the second refined version identified another 14 properties and 1 relation.

After three iterations of refinement the system ontology overall comprises 6 ob-
jects, 45 properties and 3 relations.

2.5 Extended Partial Why-Because Graphs

To analyse the causal factors leading to a deviation, an extended partial Why-Be-
cause Graph (epWBG) is created. Why-Because Graphs were intended for a-pos-
teriori analysis of incidents, in which all causes of a node actually occurred (Lad-
kin 2000). We could say by analogy with fault trees, that the graph-relationships
are all AND-related. For system development, we need to consider alternative
ways in which an event can occur, and thus one needs to represent an OR-type re-
lationship as well, as in e.g. Mackie’s INUS conditions (Mackie 1974). The WBG
is extended by introducing an OR relationship, and because we are only concerned
with limited causal relationships among certain elements, we call the result an ex-
tended partial WBG or epWBG.

Typically the epWBG describing the causes of the occurrence of a deviation are
rather small, the number of their nodes varying between 1 and 11. For example,
the events that can cause the deviation ‘The Network has no shielding’ which can
be expressed as “Shielding(Network) = 0” to occur can be represented as in Fig-
ure 2.

Fig. 2. epWBA of deviation ‘The Network has no Shielding’

From the system definition only three events can lead to the deviation occurring:
either the shielding was omitted during design; direct interference from outside the
system caused the shielding to disappear; or the shielding failed by itself.

Other deviations are more complex in their causal description. The causes of
the event of a network node becoming dysfunctional or broken, ‘NOT
Intact(NIC)’, are shown by the epWBG in Figure 3.

10

Fig. 3. NIC is not intact

2.6 Statistics of the Analysis

As shown in Figure 4, the elements in the ontology of the system description ex-
panded most in the first refinement step. The step from 2nd to 3rd iteration also
provided a more detailed system description; the missing elements were mostly
properties of objects and one relation.

11

1st
itera-
tion

2nd
itera-
tion

3rd
itera-
tion

0
10
20
30
40
50
60 Relations

Pr operties
Objects

No
.

of
 e

le
m

en
ts

Fig. 4. Extent of Elements in System Description's Ontology

1st itera-
tion

2nd
iterati-
on

3rd itera-
tion

0
20
40
60
80

100
120
140
160
180
200

32,2

84,25
95,03

Inexpr essible
Deviations
Expressible
dev iations
Quota of des-
cr ibable Devia-
tions

N
o.

 o
f D

ev
ia

tio
ns

Fig. 5. Expressible and Inexpressible Deviations

In Figure 5 the overall numbers of deviations are shown, classified into deviations
expressible with the system description's current ontology and those so inexpress-
ible. The refinement step is expressly intended to be able to state these deviations.
As can be seen, with advancing refinement of the system description, the percent-
age of expressible deviations continually improves.

12

2.7 Transformation of epWBGs into Fault Trees

For risk assessment of the system, it is necessary to quantify the possible failures.
One common way to do this is through a fault-tree analysis. A fault tree was creat-
ed by first translating the epWBGs into corresponding small fault trees, which
were then combined into an overall fault tree describing all the possible factors
leading to a failure. This transformation was performed by a group who were
learning how to work with fault trees. The goal was not to produce a fault tree
suitable for troubleshooting and system maintenance, which requires that nodes
adjacent to the root-node act as decision points, but rather to produce a fault tree
which could be used for risk assessment, in which leaf nodes are assigned proba-
bilities and the probabilities are combined moving up the tree towards the root-
node. Thus, when constructing the combined fault tree, certain ‘classification
nodes’ were introduced to denote clusters of similar factors without regard as to
whether these classifiers were observable. So e.g. Human failure was used as such
a classifier and would obviously not be appropriate in a fault tree used for diagno-
sis.

2.7.1 Filtering of epWBGs

During the course of the analysis, several epWBGs were built which identified
problems residing in the specification. As the goal of the fault tree lies in the as-
sessment of risk for an implemented system, such specification faults were not in-
cluded in the combined fault tree, for they would be eliminated before the imple-
mentation stage.

Another feature of the deviation-identification approach is the identification of
trivial events such as ‘The device does not exist’. In most cases, such events occur
also through failures in specification or the implementation and would similarly be
eliminated before the implementation stage and were not included in the combined
fault tree.

epWBGs comprising only two nodes resolve to an identity in fault-tree nota-
tion. They occur as one node in the generated fault tree.

2.7.2 Algorithm used for clustering epWBGs

As the epWBGs are formulated to describe deviations, one epWBG can describe
factors involved in other epWBGs. To cluster these, the following procedure was
used:

1. Choose one epWBG

2. Look at leaves

13

3. Select concepts in leave nodes

4. Look up concepts in HAZOP tables

5. Identify the interpretation that fits the node in HAZOP table

6. Go to the list of identified deviations and identify the respective deviation num-
ber

7. Repeat process for the epWBG for the identified deviation

The application of this procedure led to several combined epWBGs which formed
the basis for the next step, the transformation into one larger fault tree.

2.7.3 Conversion of clustered epWBGs into partial Fault Trees

A typical example for the conversion from an epWBG into a partial fault tree is
shown below and should be self-explanatory given the above comments.

Fig. 6. epWBG formulated to describe deviation and the resulting Fault Tree

2.7.4 Combining partial Fault Trees into one overall Fault Tree

As root node for the fault tree the event ‘Problem occurs’ was chosen, a nonde-
script, but generic name for all system failures identified in the OHA.

14

Investigation of the epWBGs revealed that all failures could be classified under
the topics ‘Human failure’, ‘Information not transceived’ and ‘No data from de-
vice’. The resulting head of the Fault Tree is shown in Figure 7.

Fig. 7. Head of Fault Tree

Then the partial fault trees were sorted according to their respective classification.
The resulting fault tree comprises about 150 nodes. This is of a size often encoun-
tered in industrial fault tree analyses and the risk calculation can be handled by the
usual methods. The fault tree represents only a certain level of refinement of the
system, however, this refinement suffices to allow an arguably realistic assessment
of risk given the usual probabilistic independence assumptions in fault tree analy-
sis. We would caution however, that such independence assumptions must them-
selves be carefully analysed in order to ensure they hold. Our analysis did not go
this far.

3 Second Case Study: OHA of Train Dispatching

This work formalises the German train-dispatching protocol for non-state-owned
railways (‘Zugleitbetrieb’). Administrative law (VDV 2004) sets the requirements
for how this is to be done. We derive a system expressed in SPARK source code
which implements a (completed version of) this legal protocol.

Complete traceability is maintained between the abstract high-level safety re-
quirements and the SPARK source code through formal refinement. Were the
SPARK code to be implemented in communicating machines which either back up
or replace the human agents of the system, then the risk analysis of the system
may assume that the logic of the communications is faultless. The residual risk
consists of the risks associated with the ADA compiler, the hardware used for run-
ning the code and for the communications, and human factors.

A set of safety requirements which are guaranteed to be adequate are derived
by starting with a very simplistic, seemingly trivial description. The safety re-
quirements are determined for this first level (Level 0) by enumerating all possible

15

truth functions for two trains in the available language, and determining which of
these are safety requirements.

The original Zugleitbetrieb (ZLB) relies on a single human operator (the dis-
patcher, or Zugleiter) to make sure that a given track section is free before allow-
ing any train to enter that section. There are no signals and other supporting tech-
nology to locate trains. The system, as well as its derived system developed here,
relies solely on messages passed between the train conductors and the dispatcher.

2.2 Ontological Hazard Analysis

Fig. 8. Structure of the OHA

3.2.1 Starting the OHA --- Level 0

The goal of the highest specification level, Level 0 is not to provide a detailed de-
scription of train operations, but to provide a description that is so simple that we
can define safety axioms to which all applications experts can assent and at the
same time ascertain that these axioms are both correct and complete relative to
the expressions of the language.

16

Fig. 9. Schematic Representation of Level 0

Table 5. Level 0 Sorts

Sort Description
Vehicle Any train or other vehicle operating on tracks
Block A section of a track inside or outside a station

Table 6. Level 0 Relations

Relation Description
inA(F,S) Train F is in Block S
ZV(F,S) ZV(F,S) Train F may occupy Block S under central responsibility (normal

scheduledoperation)
LV(FS) ZV(F,S) Train F may occupy Block S under local responsibility (special case)

Determining Safety Axioms. Using elementary propositional logic as well some
semantic domain knowledge we are able to determine that there turn out to be only
6 safety postulates on Level 0 from consideration of a couple of dozen non-equi-
valent statements from a total of 256 statements before semantic reduction. We
use the following shorthand notation for a train F1 and one block S: LV(F1,S) =
LV1, ZV(F1,S) = LZ1, inA(F1,S) = in1; similarly for train F2. The Safety Postu-
lates at Level 0 are shown in Table 7.

Table 7. Safety Postulates at Level 0

Safety Postulate Description
ZV1 ⇒ ¬LV1 If a train is in a block under central responsibility it cannot be there

under local responsibility
¬LV1 ∧ in1 ⇒ ZV1 If a train is in a block and is not there under local responsibility

then it is under central responsibility
in1 ∧ ZV1 ⇒ ¬LV1 If a train is in a block under central responsibility it cannot be in

that block under local responsibility
(F1≠F2) ⇒ (LV1 ⇒ ¬ZV2) If a train is in a block under local responsibility another train under

central responsibility cannot be in that block
(F1≠F2) ⇒ (in1 ⇒ ¬ZV2) If a train is in a block another train under central responsibility

cannot be in that block
(F1≠F2) ⇒ (ZV1⇒¬ZV2) If a train under central responsibility is in a block, another train un-

der central responsibility cannot be in that block.

17

3.2.2 Level 1: First Refinement

Fig. 10. Schematic Representation of Level 1

The generic block of Level 0 is refined as follows, introducing the new sorts Track
and Station. This leads to Table 8.

Table 8. Level 1 Sorts

Sort Description
Vehicle Train or other track vehicle
Block A track section
Track A piece of track in the station
Station A station where messages are exchanged

On this level we then have 10 relations. Meaning Postulates define what each
Level 0 sort and Level 0 relation means in terms of the Level 1 language.

Using the Meaning Postulates we arrive at 12 Safety Postulates for Level 1.

3.2.3 Level 2

Fig. 11. Schematic Representation of Level 2

In this level no new sorts are added, but additional relations concerning ‘clear-
ances’ are added, as shown in Table 9.

Table 9. Level 2 Relations

Relation Description
FA(F,A,B) Train F, in station A, has asked for clearance to go to station B
FE(F,A,B) Train F, in station A, has received clearance to go to station B
AFE(F,A,B) Train F, in station A, has been denied clearance to go to station B
KH(F,A,B) No obstructions are known for train F to go from station A to station B

18

At this point we are now able to build a state-machine representing the global
states of clearances which represents a train journey.

The state-machine is shown in Figure 12, which is presented as a Predicate-Ac-
tion-Diagram (Lamport 1995).

State Description
s0 inZ(T , A)
s1 ∧ inZ(T , A)

∧ FA(T , A, Next(T , A))
∧ ¬ FE(T , A, Next(T , A))

s2 ∧ inZ(T , A)
∧ FA(T , A, Next(T , A))
∧ KH(T , A, Next(T , A))

s3 ∧ inZ(T , A)
∧ FA(T , A, Next(T , A))
∧ ¬ FE(T , A, Next(T , A))
∧ ¬ KH(T , A, Next(T , A))
∧ AFE(T , A, Next(T , A))

s4 ∧ inZ(T , A)
∧ FA(T , A, Next(T , A))
∧ FE(T , A, Next(T , A))
∧ KH(T , A, Next(T , A)

s5 ∧ zw(T , A, Next(T , A))
∧ FE(T , A, Next(T , A))
∧ KH(T , A, Next(T , A))
∧ ¬ LV(T , S)

s6 inZ(T , A) = s0
s7 ∧ btw(T , A, Next(T , A))

∧ FE(T , A, Next(T , A))
∧ ¬ KH(T , A, Next(T , A))
∧ ¬ LV(T , S)

Fig. 12. Level 2 state-machine

Three simple Meaning Postulates and elementary logic leads to only two new
Safety Postulates, which can be expressed informally as:
 if no obstructions are known and clearance has been given, the block can be oc-

cupied under central responsibility

19

 clearance for a block cannot be given for a second train, if clearance has
already been given for a train for the same block in either direction.

Hazards. The new hazards identified at this level are simply the negations of the
newly identified Safety Postulates:

 Clearance has been given, and no obstruction is known, but the conditions for
occupying the block under central responsibility have not been met.

 Clearance has been given for two trains for the same block at the same time.

3.2.4 Level 3

Fig. 13. Schematic Representation of Level 3

Level 3 includes the specific defined communications between trains and a dis-
patcher.

Message types correspond to the states in which the trains can be, and are de-
signed according to the message types prescribed in the regulations for German
non-state-owned railways (VDV 2004).

Table 10. Message types at Level 3

Message Type Description
FA Request for Clearance (Fahranfrage)
FE Clearance (Fahrerlaubnis)
AFE Denial of Clearance (Ablehung der Fahrerlaubnis)

20

AM Notification of Arrival (Ankunftmeldung)

In addition, we define relations to describe sending and receiving of messages, as
shown in Table 11.

Table 11. Relations at Level 3

Relation Description
Sent(MT,T,A) Message of type MT, concerning train T and station A has been sent.
Recd(MT,T,A) Message of type MT, concerning train T and station A has been received.

Note that the sender and receiver of the message are implicit. Messages of type FA
and AM are always sent by the specific train to the dispatcher, messages of type
FE and AFE are always sent by the dis-
patcher.

Through appropriate Meaning Postulates,
the state machine of Level 2 can be augmen-
ted to include communications. This now
more complex state machine can be trans-
formed into a Message Flow Graph (MFG),
to make the communications visually clear.
The MFG represents the individual agents
and their changing states as vertical lines,
message passing between agents as angled
lines. The MFG can be formally shown to
define the same global state machine as the
Predicate-Action-Diagram for this level.

The MFG is used as the starting point to
define the SPARK implementation and the
SPARK verification conditions are determ-
ined by hand to define the MFG of Figure
14.

 Fig. 14. The Message Flow Graph

Table 12. States corresponding to the Message Flow Graph

MFG-
Trans.

Driver-State Controller State Global State

s0 inZ(T , A)A) – inZ(T , A)
s0 → s1 ∧ inZ(T , A)

∧ Sent⟨FA, T , Next(T , A)⟩
-- ∧ inZ(T , A)

∧ Sent⟨FA, T , Next(T , A)⟩
s1 → s2 -- Recd⟨FA, T , Next(T , A)⟩ ∧ inZ(T , A)

∧ Sent⟨FA, T , Next(T , A)⟩
∧Recd⟨FA, T , Next(T , A)⟩

21

3.2.5 The Step to Code: Implementation in SPARK

SPARK is based on a subset of the Ada language. It uses annotations to denote
data and information flow and to specify pre- and post-conditions for functions
and procedures.

The SPARK tools include a static code analyser that uses the annotations to
prove the absence of run-time errors, such as division by zero, buffer overflows
and other bounds violations before the code is actually compiled.

SPARK annotations

 strengthen specification

 ‘Design by Contract’

 Allow analysis without access to implementation

 Analysis can be done early, before programs are compilable

SPARK Code Verification Tools

 Examiner

– Checks control flow and data flow

– Checks information flow

– Generates proof obligations (“verification conditions”) for run-time errors

 Simplifier

– Automatic proof of large majority of proof obligations

– (Interactive) Proof Checker

– Used to prove the remaining verification conditions

– Used to prove conformance of Code to pre/postconditions

Properties of SPARK Code

 Unambiguous

 Bounded space and time requirements

 Free of runtime errors

Code for train dispatching has been completed by Phil Thornley of SparkSure,
based on the Message Flow Graphs. Proofs have been completed that the Code
fulfils the annotations, and that the annotations fulfil the Level 3 Message Flow
Graph description.

22

Typical Example of SPARK annotations corresponding to the MFG

procedure Send_FA (DS : in out Driver_State);
--# global out Messages.Out_Queues;
--# derives Messages.Out_Queues from
--# DS
--# & DS from
--# *;
--# pre D_State(DS) = D_S0;
--# post To_S1(DS˜, DS);

Fig. 15. Summary of Second Case Study

The uninterrupted traceability from Level 0 requirements down to the SPARK
source code ensures that the source code fulfils the Safety Requirements of
Level 0.

References

Hazell RW, McHattie GV, Wrightson I (2001) Note on Hazard and Operability Studies
[HAZOP]. Royal Society of Chemistry, London

Ladkin PB (2000) Causal Reasoning about Aircraft Accidents. In: Koornneef F, van der Meulen
M (eds) SAFECOMP 2000. Springer Lecture Notes in Computer Science, 1943:344-360

Ladkin PB (2005) Ontological Analysis. Safety Systems 14(3)

23

Ladkin PB, Leue S (1995) Interpreting Message Flow Graphs. Formal Aspects of Computing
7:473–509

Lamport L (1995) TLA in Pictures. IEEE Transactions on Software Engineering SE-21
Mackie JL (1974) The Cement of the Universe: A Study of Causation. Oxford University Press
Redmill F, Chudleigh M, Catmur J (1999) System Safety: HAZOP and Software HAZOP. John

Wiley & Sons, Chichester
VDV (2004) Fahrdienstvorschrift für Nich-bundeseigene Eisenbahnen (FV-NE). Verband

Deutscher Verkehrsunternehmen. Ausgabe 1984, Fassung

