
Assurance Points in Software Development

Peter Bernard Ladkin

Causalis Ingenieurgesellschaft mbH/Causalis Limited

21 May 2018

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 1 / 48

Clari�cation

The original slideset was designed as accompaniment to the talk.
This slideset is a modi�ed version for reading.

First, a prolegomenon

Then the slides used in the talk

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 2 / 48

Prolegomenon

Why standards are important

the Basic Safety Standard IEC 61508
I what is in it concerning cybersecurity
I that cybersecurity very possibly \changes the game"

disagreements about the e�cacy of so-called \formal methods" (FM)

examples of inconsistency in critical-system functional speci�cations,
courtesy of Michael Jackson

from safe.tech 2018: critical software developed painstakingly from
..... \User Stories"!

unravelling \safety requirements" and \software safety requirements"
in IEC 61508

I not for the faint-hearted
I but FM is \highly recommended" for the more rigorous levels

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 3 / 48

Prolegomenon, cont’d

A list of the 26 points in SW development at which objective
properties of SW and it documentation can be assured with the help
of FM (and, often, not without such help)

details on the current IEC New Work Item Proposal 65A/867/NP up
for voting

key questions motivating this work
I should we be building critical systems which we do not guarantee are

�t for purpose?
I does it still \cost too much" for such a guarantee?

dependable software... does not do what we want to avoid

but (IEC 61508-3 subclause 7.7.2.7 a)) \testing shall be the main
validation method..."

I Rubbish! { it can’t be, and the proof is simple
I this has been known and remarked for 49 years

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 4 / 48

Prolegomenon, cont’d

for example, let us consider what needs to be analysed concerning
functional requirements

I we have seen issues with consistency
I what about completeness?
I Lutz 1993: safety-related errors arose most frequently (> 98%!) from

discrepancies between requirements speci�cations and conditions
encountered in operation

I completeness was thus the biggest problem
I anecdotes suggest that matters have not changed very much
I because, we might suppose, the lesson was not well learned

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 5 / 48

Prolegomenon, cont’d

there is a problem here with IEC 61508 and its concepts of
veri�cation and validation

V & V as a folk saying
I veri�cation is assuring \you have built the system right"
I validation is assuring \you have build the right system"
I validation in this conception addresses the Lutz phenomenon

hard hats on for the convoluted de�nitions of V & V from IEC 61508
I astonishingly, they are almost the same
I they don’t appear to address the Lutz phenomenon

we can do better { to �nish, a simple \Waterfall" scheme motivating
the 26 assurance points

Thanks to the German Federal Ministry for Economic A�airs and
Energy for support of some of this work

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 6 / 48

Now for the talk slides

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 7 / 48

IEC 61508-3:2010

Current \Basic Safety Standard" (generic standard) for software
development in safety-critical applications

I does not apply to aerospace
I does not apply to medical systems
I required for industrial-process plant (IEC 61511 refers to it)
I \adapted" for rail control and protection systems (EN 50128)
I \adapted" for road vehicles (ISO 26262)

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 9 / 48

Exercise: Spot the Cybersecurity Vulnerability

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 15 / 48

System Functional Requirements
Example II (Harel)

Chemical-manufacturing plant

Speci�cation included, in three totally di�erent locations,
I \If the system sends a signal HOT then send a message to the

operator"
I \If the system sends a signal HOT with T > 60 deg then send a

message to the operator"
I \When the temperature is maximum, the system should display a

message on the screen, unless no operator is on the site except when
T < 60 deg"

(Partial solution: Statecharts)

That was even longer ago. Are we better today?

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 19 / 48

The State of the Art (safe.tech Conference, April 2018)

Engineer from a well-regarded critical-software company
I active in automotive, avionics, and so on

\agile" development applied to critical software

very �ne-grained
I meticulous version control
I multiple builds per team per day
I multiple inspections per build

impressive: reminder that \traditional" Waterfall/V-Model concerns
documentation style and not the means of coding

PBL: \What about the functional requirements"

reply: \..... User Stories"
I not even Use Cases! (Structured User Stories?)

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 20 / 48

What is Actually Said in IEC 61508-3

IEC 61508-3:2010 subclause 7.2.2 Note 2:

For the selection of appropriate techniques and measures . . . , the

following properties . . . of the software safety requirements speci�cation

should be considered:
{ completeness with respect to the safety needs to be addressed by

software;

{ correctness with respect to the safety needs to be addressed . . .

{ freedom from intrinsic speci�cation faults, including . . . ambiguity

{ understandability . . .

{ freedom from adverse interference [from] non-safety functions . . .

{ capability of providing a basis for veri�cation and validation

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 21 / 48

What is a Software Safety Requirements Speci�cation?

\software safety requirements" unde�ned in IEC 61508-4 (the
De�nitions part)

IEC 61508-1:2010 subclause 7.5 Overall Safety Requirements

I 7.5.2.1 A set of all necessary overall safety functions shall be developed
based on the hazardous events derived from the hazard and risk
analysis. This shall constitute the speci�cation for the overall safety
functions requirements.

I 7.5.2.2 If security threats have been identi�ed, then a vulnerability
analysis should be undertaken in order to specify security requirements.

I 7.5.2.3 For each overall safety function, a target safety integrity
requirement shall be determined that will result in the tolerable risk
being met. . . . This shall constitute the speci�cation for the overall
safety integrity requirements.

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 22 / 48

Software Safety Requirements

SW safety requirements consist of (IEC 61508-3:2010 subclause
7.2.2.10)

I safety functions to be implemented in SW
I the \software systematic capability"

systematic capability is (Part 4, subclause 3.5.9)

measure . . . of the con�dence that the systematic safety integrity of
an element meets the requirements of the speci�ed SIL, in respect of
the speci�ed element safety function, . . .

\element" is not a well-understood concept

PBL: SW has to run on HW, and it is this SW+HW which
usually/often/sometimes/occasionally constitutes the \element"

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 24 / 48

Points at Which Rigorous Assurance can be Applied in
Safety-Critical Software Development

26 points at which objective properties of SW and its documentation
can be established using mature mathematical/logical methods

I Bishop, Bloom�eld, Knight, Ladkin, Littlewood, Rushby, Strigini,
Thomas: the \Finsbury Group", 2009-2011

I call these assurance points
I some are objects

F e.g., a functional requirements speci�cation

I some are arguments showing properties and relations between these
objects

F e.g., that the design spec ful�ls the functional requirements spec
F \ful�ls" is a binary relation between two speci�cations

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 26 / 48

The 26 Points, 2011 Version

1. Formal functional requirements speci�cation (FRS)

2. Formal FRS analysis

3. Formal safety requirements speci�cation (FSRS)

4. Formal FSRS analysis

5. Automated proving/proof checking of properties (consistency, completeness of

certain types) of FRS and FSRS

6. Formal modelling, model checking, and model exploration of FRS, FSRS

7. Formal design speci�cation (FDS)

8. Formal analysis of FDS

9. Automated proving/proof checking of ful�lment of the FRS/ FSRS by FDS

10. Formal modelling, model checking, and model exploration of FDS

11. Formal determininistic static analysis of FDS (information
ow, data
ow,

possibilities of run-time error)

12. Codevelopment of FDS with ESCL

13. Automated source-code generation from FDS or

intermediate speci�cation (IS)

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 27 / 48

�! IEC New Work Item Proposal

Work presented January 2010 to DKE AK 914.0.3
I \Safe Software" Working Group of the German National Committee

(DNC) responsible for IEC 61508

Final proposal (not all 26 assurance points) agreed October 2016

DNC resolved November 2017 to propose it to the IEC

forwarded to the IEC in March 2018

IEC project 65A/867/NP currently in vote from country participants
in SC65A (31 countries) until June 2018

I Requirements and Guidance in the use of mathematical and logical
techniques for establishing exact properties of software and its
documentation

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 29 / 48

Key Questions Motivating this Work

Moral question, then as now:

should we any longer be building systems which we don’t guarantee
are �t for purpose?

Business/social question:

does it (still) \cost too much for the bene�t" to build systems with
some kind of guarantee they are �t for purpose?

Engineering/economics question: why is this needed?

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 30 / 48

Evaluating the Core

To illustrate what follows from this:

Requirements

they should be speci�ed

they should be consistent
I if they are not consistent, they cannot be ful�lled
I because di�erent domains in a complex system have di�erent expertise,

it is not only common but easy to generate con
icting requirements
from di�erent domains (e.g., the examples reported by M. Jackson)

they should be complete

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 35 / 48

Completeness of Requirements

Requirements completeness, second meaning: considering all the
circumstances in which the system will operate, and specifying its
behaviour in all these circumstances

The second meaning is

a usual, practical meaning
I it is often arti�cial to limit the system vocabulary in a way that would

enable one to address the �rst meaning

the source of most complex critical-system failures
I Evident since at least Lutz, 1993: \Safety related software errors are

shown to arise most commonly from discrepancies between the
documented requirements speci�cations and the requirements needed
for correct functioning of the system and misunderstandings of the
software’s interface with the rest of the system"

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 37 / 48

IEC 61508 De�nitions II

\3.8.2
validation
con�rmation by examination and provision of objective evidence that the
particular requirements for a speci�c intended use are ful�lled
.....

NOTE 2 Validation is the activity of demonstrating that the safety-related
system under consideration, before or after installation, meets in all
respects the safety requirements speci�cation for that safety-related
system. Therefore, for example, software validation means con�rming by
examination and provision of objective evidence that the software satis�es
the software safety requirements speci�cation."

Exercise: spot the di�erence.

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 41 / 48

Testing?

I have not addressed testing. Despite its \primacy" for \validation".

Another time, maybe........

Keep cycling! And recycling!

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 46 / 48

Re Cycling: the Vulnerability Not Exploited

Peter Bernard Ladkin (Causalis) Assurance Points in Software Development 21 May 2018 47 / 48

