Dependable Software: A View

Peter Bernard Ladkin

University of Bielefeld CITEC and Causalis Limited

21 June 2011

ICAusAus

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 1/27

Epiphany

@ Recent Events

» Fukushima Dai-ichi Accident

» Family Court application

» Publishing my paper

» Modern university “research” environment

In Common: we've lost the picture (but I'm not sure we ever had it)

How to regain the Picture?

Conclusion:

RIV|S

romensens G 1 T=C
Universitat Bielefeld [CAusaus

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 2/27

Thinking

@ Are we thinking hard enough about what we are doing?

Universitt Bielefeld - |CausaLis.

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 3/27

Before | Get Stuck In (or Sidetracked)

The technical paper:

Go to www.rvs.uni-bielefeld.de

From the links left, choose Publications
Scroll down a bit to What's New
There it is

Or would you rather have the URL? Why?

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 4 /27

Human Requirements Conflicts, Example 1

@ From my experience 15 years ago

» Complex, possibly perfect, specification language and method
“Method"” not described
| devised one, with large hints from the developer
It worked! But it proved difficult to transmit to students
| remain one of about only a half-dozen people who can use it
And even | probably can’t, any more

vV vy vy VvYyy

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 5/27

Human Requirements Conflicts, Example 2

@ One of the more visible international conferences in this field

>
>
>
>

| have been often on the Committee

And | read a lot of the papers (also at selection time)

Industrial people complain that it's “academic”

Committee members say: there are few “quality” submissions from
industry

> All agree! The question is: what to do about it

Things stay as they are. But everyone wants them different

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 6 /27

Human Requirements Conflicts, Example 3

e “Formal methods don't work!” (reputed: B. Boehm, 1980's)
@ Some of us: “they do, you know!" (Sir Tony H, Martyn Thomas,
AdaCore, me, my pals, my cat)
» “But we can't learn them”
> “We'll develop some you can learn”
» “Costs too much (people, time) for the benefit”
@ Moral question: should we any longer be building systems which we
don't guarantee are fit for purpose?

@ Business/social question: why does it (still) “cost too much for the
benefit"?

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 7/27

Aside: Resolving Example 3

e SW is a mathematical object (Sir Tony H.)
@ But it obviously isn't (many C compilers)
@ Response 1: it should be (it's about time)!

@ Response 2 (the “mature” thought): SW behavior can be assured
fit-for-purpose in so far as the SW (behavior) can be -is- construed
as a mathematical object

@ Moral question: see above

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 8 /27

Other Human lIssues. Example 1

@ One reads how nuclear power plant operators and authorities in Japan
(and who knows who else?) were apparently insensitive to the
tsunami hazard

@ Where is the HazAn?

» Whereever the official one is, it is not publically available

@ Answer: in the book The Next Catastrophe”by Charles Perrow, pp

134 and 173

@ Why does it take a sociologist to perform a HazAn? Isn’t it our job?

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 9 /27

The Broader Resulting Issue, Firmed Up

@ Answer: Prof. Perrow has part of the picture which we don't have
@ How do we get it?
» By thinking harder

» By paying more, and wider, attention to what we do and its
environment

@ Perrow is an organisational theorist

» He knows how people work, and don’t work, in organisations
» He knows about the environment, that is, politics

» He knows how easily things get suppressed and circumvented

@ But that’s our problem! Shouldn’t we own it? Apparently we don't

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 10 / 27

What | Promised to Talk About

@ | was going to talk about standards development for “safe software’

in Germany

o (Systems people will say that phrase involves a category mistake)
@ It involves saying what assurance methods were used and why, and
o (the key issue, | think) which methods were not used and why not
@ | gave a preliminary version of the talk in Fulda in May

> |t went down amazingly well!

> No riots. Everybody relaxed.

» Triumph! Formal methods don't scare people any more!

» Then it occurred to me
@ | couldn’t do that to the Edinburgh audience, now, could 1?7
@ The major point: people weren't listening

» Maybe because they didn't care
@ Again: the human issue

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 11 /27

Down to Brass Tacks

@ Reliable SW does what we want it to do

» Do we know what we want? Really know?
» How do we tell that we know what we want?
» How do we tell the SW does it?

@ But it also doesn’t do what we don't want it to do

» How do we know what we don't want?
» How do we assure ourselves that we know?
» How do we tell that the SW doesn't do any of that?

@ | am told by IFIP not to say “reliable” but rather “dependable”

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 12 /27

Brass Tacks: Application

o My C compiler does what | want it to do

» Do | know what | want? Yes. Really know? Yes.
» How do i tell that we know what | want? 40 years experience.
» How do we tell the SW does it? Duuuuhhh.

@ But it also doesn't do what we don't want it to do

» How do we know what we don't want? Trickier.

» How do we assure ourselves that we know? | don't think we do

» How do we tell that the SW doesn’t do any of that? | don’t think we
do.

@ What do | conclude about the “dependability” of my object code?

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 13 /27

How Good Are We?

......... after all these years?

@ Major military airplane, SW developed according to civil standards
(DO-178B)
@ SW developed according to DA Level A and B

No significant quality difference found between Levels A and B

@ “Module” quality generally very poor

Let me call the pieces of SW “modules”, not a technical term here
The worst had a defect rate of 1 in 10 lines of executable code (LOC)
The best had a defect rate of 1 in 250 LOC

Errors found are a litany of run-time-type problems, including some
that should count as solved since the late 1960's but apparently aren't

vV vy vYyy

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 14 /27

Types of Errors 1

(With thanks to Martyn Thomas and)
The following defects were among those reported in the software after
certification:

Erroneous signal de-activation.
Data not sent or lost

Inadequate defensive programming with respected to untrusted input
data

Warnings not sent
Display of misleading data

Stale values inconsistently treated

Undefined array, local data and output parameters

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 15 / 27

Types of Errors 2

Incorrect data message formats
Ambiguous variable process update
Incorrect initialisation of variables
Inadequate RAM test

Indefinite timeouts after test failure
RAM corruption

Timing issues - system runs backwards

Process does not disengage when required

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 16 / 27

Types of Errors 3

Switches not operated when required

System does not close down after failure

Safety check not conducted within a suitable time frame
Use of exception handling and continuous resets

Invalid aircraft transition states used

Incorrect aircraft direction data

Incorrect Magic numbers used

Reliance on a single bit to prevent erroneous operation

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 17 / 27

How Good We Are, cont'd

@ One airplane: 1 in 250 LOC or worse
@ Rumored industry standard for safety-critical SW: 1 in 1000 LOC
@ Best documented quality: 1 in 25,000 LOC (guess who!)

| say we aren't very good.

RIVIS cit= cI

Verteilte Syster

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 18 / 27

What To Do About It

@ It must be a people problem

» There is no other explanation for why mistakes are still being made
whose technical solution has been known for four decades

@ People problems are notoriously intractable
» Recall the examples in my epiphany
@ In short, | don't know what to do about it, except by bringing it to
technical people's attention

@ Still, address the memes and mantras

RIVIS 7z cI

Vertoine sy:m

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 19 / 27

Memes and Mantras

Actually, | prefer the term “trope”
A meme is an idea that promulgates (Dawkins and Dennett)
A mantra is a short statement or belief (see below)

A trope is a mantra with reasoning

» “Formal methods don't work™. Baloney. But some proposals, even
most, are impractical.
“There is no silver bullet”. Maybe, but garlic is readily available
“Programming language Q is as good as programming language S if
you take care”. Taking care didn't help with all those errors in the
aircraft SW. If the client had insisted on using a strongly-typed
language with adequate compiler, most of them could not have
occurred

» " Our SW has been proven reliable in use” Can you show us the

statistics? Is your statistical reasoning valid?
RIVIS 7z CI

Vn\llsy(me

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 20 / 27

What Not To Do About It

o Write a generic software safety standard that is 50pp long
» That is in part demonstrably logically incoherent
» Based on a set of concept definitions that are appallingly sophomoric
(if you happen to have a degree in a subject for which analysing
definitions is essential)

@ Then, thirteen years later, extend it to 150pp!

> Not my fault! | came in later
» But | will be involved with the next version
» Will it be an improvement? We'll have to see

@ Some prominent SW specialists think the standards process is broken

» They have plenty of evidence to choose from!
» If it's “broken”, can it be fixed?
> How?

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 21 /27

The Core of an Ideal Safety Standard

Determine what we don't want the system to do (Accidents)
» As completely as possible
» Provide the assurance that you have everything

@ Determine how it could happen (Hazards)

» As completely as possible
» If you go too far, that's OK
» Provide the assurance of coverage (completeness)

“Apportion” the hazard behavior to the system components
(including SW)

» Show the apportionment covers the hazards

For the SW, indeed any component: repeat the above

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 22 /27

Evaluating the Core

Did | include everything essential?
Can you remember it?

Can you remember it well enough to recite it at will to management?

If not, can you improve it?
» Keep it to a page, like a pilot's checklist
> It's a “memory item”

RIVIS 1= CI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 23 /27

Bringing in Architecture

@ SW has four general life stages

» Requirements development and specification

» Design specification

» “Source” code: more generally, the intermediate constructed object
> The object code (linked)

@ Apply the generic method to these four stages

@ Hint: you pretty much have to use formal refinement

RIVIS 7z CI

Vertoine sy:m

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 24 /27

Bringing in Architecture

So, for example, you need

To assess requirements

Compare design against requirements

°

°

@ Compare source code against design

@ Compare object code against source code
°

Consider run-time monitoring

There are 26 industrially-mature steps and techniques which can be
applied. | won't list them here (not a “memory item"”, even for me). There
are in the proposal we are discussing in DKE GK 914, and in the paper
accompanying this talk

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 25 /27

Example — Ontological Hazard Analysis

Analysis
Safety Regs 0 [
1 Proof ¥ Refinement T Proof
Analysis A |
Safety Reqs 1 | «— | | = - 1
¥ Refinement
Proof / FE\ Proof
AP
Analysis g,
Safety Reqs 2 | «—— Level 2

¥ Refinement

Proof Proof
VAITIAN
T,

Analysis =
Safety Reqs 3 | «——m

¥ Translation into Code A Proof I

[CAusALIS

A Proof Analysis

| SPARK-Annotations | «———— SPARK-Code

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 26 / 27

Finis

But this talk is long enough
Technical details are hardly ever remembered
The technical material is available on the WWW

The important thing is that people who are interested and concerned
know it's there, and how to get to it

o ... and are motivated to engage in the process of improving matters

@ ... which | hope is what this talk has been about

Thanks for listening!

RIVIS 1= cI

Peter Bernard Ladkin (CITEC/Causalis) Dependable Software: A View 21 June 2011 27 / 27

