Chapter 20

The Logic EL

In order formally to verify that a causal explanation is indeed correct and rel-
atively sufficient, we need a formal reasoning system, a formal logic, in which
to do so. We describe the logic EL. Since our explanations are explanations of
happenings-through-time, the basic concept of a world with behavior will be that
of tense logic; accordingly we use the tense logic TLA and the specification lan-
guage TLA+, and the worlds will be TLA models, TLA behaviors. In order to
discuss the counterfactual aspects of causality, what would have happened if...,
we shall need to discuss alternative behaviors to the actual world; accordingly
we use the possible-worlds structure of modal logics. This modality, of causally-
alternative worlds, will be a different modality to that of tense. We shall also
require an alethic modality, to speak of logical necessities, and a deontic modal-
ity to speak of behavioral norms. It turns out that both the alethic and deontic
modalities may be defined in terms of the counterfactual modality. We introduce
the formal rules of EL and illustrate the semantics.

EL uses the TLA rules, which were defined in [Lam94c| and given translation
into natural-deduction form in [Lad97]. The sections explaining the classical,
temporal and invariance rules modified versions of those in [Lad97]. Figure 20.1
contains a table of all the EL connectives.

20.1 Classical Rules

One may simply assume some set of rules or procedures for classical (propositional
and predicate) logic, as does Lamport in the TLA definition [Lam94c].

For completeness, we give a Prawitz-type natural deduction system [Pra65]
with the classical rules, presented in the traditional manner: proofs ‘move’ down-
wards towards their desired conclusion.

295



296 The Logic EL

Propositional Logic Operators

logical notation for and

logical notation for or

logical notation for not

universal quantifier (“for all’)

existential quantifier (“exists”)

implication

@ULLI<E_I<>

equivalence

(1>

definition

Inferences

From the antecedents A and B, the consequent C can be inferred.

and also

Qo ~Qlw >

A C
B A
C B

Modal Operators

temporal modality of always

temporal modality of eventually

¢| <10

leads to operator (whenever the first argument is true, the second will
eventually become true)

O[A];  future validity of A including stuttering steps

— temporal succession

O(...) deontic modality of obligation

O0— (Lewis) counterfactual dependency

Lewis-Langford relation of strict implication

—
<w  total preorder (according to Lewis)

causal explanation

=
=" causality
O= causal sufficiency

Figure 20.1: The Logical Connectives of EL occurring in this book
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20.1.1 Propositional Rules

(&-intro) A B (&-elim) AANB AAB
ANB A B
(V-intro) A B
AvB AVB
(v-elim) AV B [A] [B]
C C
C

Note that these rules strictly speaking build proof trees, not simple sequences
of formulas, since proof branches converge in certain rules. Branches converge as
we move ‘downwards’ in the proof towards the desired conclusion. The root of
the tree is the desired theorem, and the leaves are the initial assumptions.

Define (—A) to be the formula (4 = 1)

(=-intro) [A] (=-elim) A A=1B
B B
A= B
(L) 1 (Lo) (4]
A 1L
A

A restriction on both L rules is that A is different from L. A restriction on 1c
is that A is not of the form B = L (but this is only for convenience: Exercise:-
Show that if A has the form =B in ¢ that there’s another way of deriving the
conclusion). Note that L¢ subsumes L.

The use of L is logically important: if L¢ is used, the theorems are those of
classical propositional logic; if L| is used, the theorems are those of intuitionistic
propositional logic. The formal difference between the two logics is thus reduced
just to that of how negation is treated.

20.1.2 Quantifiers

we may include rules for quantifiers as follows:

(V—intro) A (V—elim) Vz : A
Vz : Ala/z] Alz/t]

in which a does not occur in the assumption set of premise A, nor within the scope

of a quantifier binding z in A; resp. no occurence of z in A occurs within the

scope of a quantifier binding a variable of ¢ (i.e. the standard logic stuff usually

embodied in the definition of <term> is free for <variable> in <formula>).
The rules for the existential quantifier are




298 The Logic EL

(3—intro) Alz/t]
dz : A

(3—elim) [Ala/z] ]
dz : A B
B

with appropriate restrictions here too.

20.2 Modal Rules

Following the approach of Prawitz [Pra65], we first define the notion of essentially
tense-modal formula:

e A is essentially tense-modal;
e | is essentially tense-modal;
e the essentially tense-modal formulas are closed under A, Vv, 3

The rules are
(O—intro) A (O—elim) OA
OA A

in which the assumption set of the premise of (d—intro) must include only
essentially-modal formulas.

This set of rules defines a natural deduction system whose theorems are those
of S4 (as shown in [Pra65]).

Axioms are proof rules with conclusions but without hypotheses, and rather
than write an axiom in proof rule notation as  we write = A. The modal

A
notions are more commonly formulated as Hilbert-style systems, with restricted
proof rules (usually just modus ponens and necessitation) and many axioms.
So, alternatively, one may add the rule of necessitation:

F
ar

with the constraint that assumptions(F) = 0,
and various of the axioms
(K) FDO(AAB)=(0DAANOB)
(T +OB=B1B
(S4) +0OB= 0O0OB
(55) |_<>AB:>|:]A<>AB
as one wishes, to obtain the system one needs [HC96]. The basic propositional
modal logic contains the axiom K along with the rule of necessitation, and is itself
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known as K. A model for a modal logic extending K is a collection of classical
(propositional or predicate-logical) models, along with a binary relation W on
these models, known as accessibility. If XWY , we say that world Y is accessible
from world X. We speak of formulas being satisfied by worlds in a model M,
thus X = A in M means that formula A is true at world X in model M. The
inductive rules for truth at a world in a model for the classical connectives and
quantifiers are identical to those of classical logic; for example

XE(AAB) £ XEAANXEB

XE=E-4 £ (XA

suffice for propositional logic, since {—, A} form a sufficient set of connectives for
classical propositional logic. The interpretation of the operators O, < uses the
accessibility relation essentially:

XEODOA = VY(XWY = Y EA)
The rule for & may be derived from the rule for O, since & = =0, and is
XEOCA £ IY(XWY A Y EA)

In the Kripke (possible worlds) semantics for modal logic, the accessibility
relation in any model for (7T') is reflexive and, conversely, any Kripke model with
a reflexive accessibility relation is a model for (7). The logic S4 is axiomatised
by the axioms (K) + (T) + (S4). The accessibility relation in any model for
S4 is reflexive and transitive and, conversely, any Kripke model with a reflexive,
transitive accessibility relation is a model for S4. The logic S5 is axiomatised by
the axioms (K)+(T)+(54)+ (55). The accessibility relation in any model for S5
is reflexive, transitive and symmetric, that is, an equivalence relation; conversely,
any Kripke model with a reflexive, transitive and symmetric accessibility relation
is a model for S5.

20.3 Temporal Rules

We need tense-logical rules sufficient for ‘simple linear-time temporal logic’ (STL),
as some computer scientists call it. It is equivalent to S4.3. There are also some
special TLA rules for handling the ‘prime’ operator. While we could extend
the Prawitz rules with axioms for S4.3, the existing TLA system is formulated
axiomatically by Lamport [Lam94c]. We include the Lamport axioms and rules
here. We refer readers interested in a natural deduction formulation to that
presented in [Lad97].
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STL1: F

oF

in which assumptions(F) =0
STL2: HOF = F
STL3: +~OOF = OF
STLA4: F=G

OF = 0G
STL5: FO(FAG) = (OF)A(OG)
STL6: + (COF) A (©OG) = CO(F A G)
STL7: FDOOOF =

To these STL axioms we add the Basic TLA Rules which specifically ax-
iomatise ‘prime’:
TLAT1. PA(f'=f) = P TLA2. PA[Al; = QA[B],
OP = PAO[P = Py OP AO[A]; = 0OQ AD[B],
where the notation

[Al; £ AV (f'=/)

20.4 Behaviors and the Rules They Engender

In order to allow proof by induction over temporal time-steps, we need to add an
induction rule:

INVI: TAN|;=T
INOWN] = 0Or

in which A is an action formula, thus defining a relation between a given state
and the next. We suppose also that f is the state function which is a sequence
whose elements are the variables of N' (TLA includes ZF, so sequences can be
formed). The rule says intuitively: if it is provable that I is preserved under
state-relation N, then it follows if AV always holds and I holds, I will always
hold. We also add the technical rule:

INV2: +0OI = (ON]; = ON ATATY)

These two rules are known as the ‘Invariance Rules’. We hope that it is clear
that these rules are sound. They suffice for many purposes, for example to prove
safety properties of systems.

20.5 Strict Implication

We observe that the only place that strict implication is used in EL is to restrict
the subproof to TLA logic. We do not anticipate use of combinatorial properties
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of > in reasoning about failures in EL. We nevertheless define them, in case they
should be needed.

Strict implication > is supposed to represent alethic modal implication, that
is, (logical or philosophical) necessity. Rather than being axiomatised directly as
a binary logical operator, B > C' is usually defined as

B> C £ O4B=0) (20.1)

and 0O, is axiomatised. We take this course and take 0,4 to be axiomatised by the
S5 logic, as is commonplace for the alethic modality intended to capture logical
necessity.

Alternatively, we could use a Prawitz-like approach, defining the notion of
essentially alethically-modal formula, and then giving rules for 04 isomorphic to
those above for O, which yields the logic S4, and adding the (55) axiom.

20.6 The Deontic Modalities

For the deontic part, we may use Standard Deontic Logic (SDL) [MWD78]. Along
with modus ponens and classical logic, SDL consists of the axioms/rules:

(Ko) FO(A= B)= (0(A) = O(B))
(Do) F-0(L)
(No) A
O(A)
(P) FP(A)=-0(—4)
(F) FF(A) = 0(-4)

However, a clean way of implementing SDL inside an S5 modal logic was dis-
covered by Anderson [And58] (see also [MWD78]). Given an alethic S5-operator
04, define a propositional constant V' (standing intuitively for ‘ Violation’), and
further define

O(B) = O4(-B = V) (20.2)

Since we have an alethic S5 operator for the definition of strict implication,
we may use the Anderson definition in order to define the deontic modality.

20.7 Lewis Semantics for Counterfactuals

The Lewis possible-world semantics for counterfactuals [Lew73b] is based on the
Kripke semantics for modal logic, with an additional relation of nearness:

World X is at least as near as world Y to world W

which we denote AsNear(X, Y, W) The Lewis semantics for O is that
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A O B in a world W if and only if B is true in all the nearest worlds
to W in which A is true.

We use semantic arguments about nearest possible worlds to evaluate formulas
of the form A O~ B. We repeat here for ease of reference the mathematical
structure concerning nearness amongst possible worlds which is necessary to make
such arguments. The relation of nearness yields a collection of binary relations
< w, one for each world W, by means of the definition

(X < wY) £ AsNear(X,Y,W) (20.3)

The relation =  shall be a total preorder, satisfying the following properties:
z 3z (reflexivity) (20.4)
(z 2y)A(y 2 2)= (z 2 z) (transitivity) (20.5)
(z2y)V(y Xz) (totality) (20.6)

The relation ~ is defined from < as:

ry = (2=y)A(y2x) (20.7)
It follows that the relation ~ is an equivalence relation, namely one that satisfies:
r =~z (reflexivity) (20.8)
(z~y)= (y~z) (symmetry) (20.9)
(z~y)AN(y~z)= (z~z) (transitivity) (20.10)

The equivalence classes are defined by the condition: z and y belong to the same
equivalence class just in case z ~ y. It follows from 20.4 20.5 20.6 20.7 20.8 20.9
and 20.10 that there is a linear order or total order < 4, on the equivalence
classes: let [z] be the equivalence class of z. Then

(2] < equiv[z]  (reflezivity) 20.11
(

(
([2] < equin[y]) A ([Y] X cquin[2]) = ([2] = [y]) (antisymmetry) — (20.12
([SL‘] = equi'u[y]) A ([y] = equi’u[z]) = ([37] =< equiv[z]) (tmnsitivity) (2013

([2] = equin[y]) V ([4] X equin[2]) ~ (tolality) (20.14

Finally, an additional requirement on < y is that W is more similar to itself
than any other world which is similar to it:

)
)
)
)

This entails that the relation < y yields an ordinal measure or ordinal scale
[KLST71] on worlds: any two worlds can be compared in terms of their similarity
to world W; either the one or the other is more similar, or they are both equally
similar.

A mathematical way of phrasing the semantics of O [Lew73b, p16] is:
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e A B is true at world W if and only if either

1. A is true at no world accessible from W at any distance; or

2. A is true at some world accessible from W, and A = B is true at all
worlds in {X|X < A}
20.8 Rules for Counterfactual Conditionals

It follows from the semantics for [ that all the inference rules for logic still
hold if all the formulas are prefaced by ‘A O ’: that is, for example

(&-intro) S O—+ A S O~ B

S O+ AAB
(&-elim) S O— AAB S O~ AAB
S O A S O0— B
(V-intro) SO A S O— B
SO~ AvB S O AVB
(vV-elim) S O— AAB [S O— A] [S O— B]
S o= C S o= C
S 0= C
(=-intro) [S O— A]
S O0— B
S 0= (A= B)
(=-elim) SO+ A SO A= B
S O— B

These should be derived rules from a reasonable axiomatisation of the coun-
terfactual conditional. Lewis axiomatises his preferred logic of counterfactuals,
VC, as follows [Lew73b, p132]. There are two rules:

Modus Ponens (20.16)

(AiAN...NA,) =B (20.17)
(CO=A)A...AN(CO=A,)) = (CO=B)

in which the second Rule 20.17 is actually a rule schema, one rule for each value
of n > 1. The axioms are:

Axiom 11 Truth-functional tautologies

Axiom 12 Definitions of the non-primitive related operators (which we don’t use
here)
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Axiom 13 A0~ A

Axiom 14 (mA0—= A) = (B0 A)

Axiom 15 (A~ -B) V (AVB)O=» ()= (A= (B= ()))
Axiom 16 (A0~ B) = (A= B)

Axiom 17 (AAB) = (AO— B)

20.9 Defining the Other Modalities

From a counterfactual satisfying VC (or the Lewis semantics in general), one
may define a modal operator

O¢A 2 (mA)0— A4 (20.18)

called by Lewis the outer modality. If the outer modality satisfies in addition the
rule (55), then the outer modality forms the S5 modal logic. The (S55) axiom for
the outer modality corresponds to the following axiom for O— :

Axiom 18 (AT~ -4) = ((A0> -4) 0= —(AO=>-4))

Lewis calls the logic VC with the additional Axiom 18 VCU [Lew73b, p121].

This means that if we take a possible world to be a model of TLA (a behavior,
a sequence of classical models ordered like the non-negative integers), in which
each pertinent state variable is a assigned a definite set-valued value), and the
set of possible worlds to satisfy the Kripke semantics (that is, that there is a
binary relation of accessibility between possible worlds), and furthermore the
worlds accessible from any given world W are totally-preordered by nearness to
W, then we may axiomatise O— as above (including Axiom 18), define the S5
alethic modality O¢ from [ using Definition 20.18, (that is, Oy4 = O¢),
define > from O using Definition 20.1, and define the deontic modality O from
O¢ using Definition 20.2.

We may define the operator == from [ as in Definition 14.5:

A

Axiom 19 A=+ B = (AABA(-AO= -B))

The transitive closure =>* is not definable in a first-order way from the
relation of which it is the transitive closure, =, as is well-known. Thus the
axioms giving the recursive definition of =~* remain in EL. (This is not to claim
that =* is not definable in VCU-EL, but rather ignorance as to whether it is.)
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20.10 Causal Sufficiency

We gave two inference rules for causal sufficiency in Section 15.1.3. These were

Rule 15.5:
c
B
-C O— —-B

C &= B
and Rule 15.6

A~ C
B O~ C

(AVB) 0= C
which suffice to demonstrate the CCT. We resisted inverting Rule 15.5 because we

considered deriving the logically minimal causal conditions to be an impractical
constraint, as we argued in Section 15.1.4. We preferred to add the Rule 15.7

Hypotheses

Procedures

(Hypotheses A OProcedures) » < Event
O FEvent

(Hypotheses N\ Procedures) 0= < Event

which also necessitated adding the Rule 15.9:

X

C

X=C
(CANA)O= B

(XNA)O=B

We do not rule out that appropriate properties for 0= will still be found
wanting, and that therefore other reasonable inference rules for = will need to
be added to EL.

20.11 The Well-Formed Formulas of EL

We define the well-formed formulas of EL to be those formulas of VCU, with the
extra defined primitives as in Section 20.9, plus =>*, and with formulas of TLA
substituted for the propositional primitives. That is, the primitive formulas are
those of TLA, and the well-formed formulas of EL are the formulas constructed
from these by the syntactic rules of VCU with the addition of the defined operator
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symbols and the symbol =>*. This ensures that TLA-tense-operators may only
occur strictly within the scope of the other modalities.

This syntax definition makes semantic sense. Possible worlds in EL are those
ways the world might have been. We have construed ‘the world’ as a temporal
succession of states and events, namely those states and events that happened
during the incident, in addition to a lot of others. So ‘the world’ is a model for
TLA, a TLA behavior. Alternative worlds are alternative behaviors. Thus a possi-
ble world in the Kripke sense for the counterfactual logic VC' (and thus for VCU)
consists of a TLA behavior, which is a model for TLA formulas. The VCU logic
makes assertions concerning propositions true or false in these possible worlds.
Thus the VCU logic is syntactically built from ‘propositional primitives’ which
describe propositions true or false in these possible worlds, i.e. TLA formulas.

Hence the definition of well-formed formulas for EL follows directly from the
requirement that a possible world for the O— logic consists of a TLA behavior.

20.12 Soundness and Completeness Observations

Let us denote by VCU-EL the fragment of EL axiomatised by VCU, with the
defined operators (and therefore without =>*), on top of the TLA primitives,
plus the TLA axioms and rules.

The binary relation of accessibility, needed for the Kripke semantics on possi-

ble worlds, is definable from the ternary relation nearness as follows. Let acces-
sibility by accessible(W, X). Then

accessible(W,X) = X < wX (20.19)
so all one needs for the semantics is a ternary relation
AsNear(W,X,Y) 2 X <yY

whose projections on the first argument W, namely {(X, Y)|X < y Y}, are total
preorders with least element W (W must be least, according to Axiom 20.15),
that satisfy the Uniformity Condition

Axiom 20 For any W and Z, {Y |accessible( W, Y)} = {Y |accesible(Z, Y)}

The Uniformity Condition is the semantic counterpart of Axiom 18: V(-models
that satisfy the Uniformity Condition are VCU-models, and VCU-models sat-
isfy the Uniformity Condition [Lew73b, pp120-121]. Axiom 18 is said to be the
characteristic axiom for the Uniformity Condition.

If one defines all the modal operators from primitive O, then the resulting
logic must be a conservative extension of VCU, and thus its soundness follows
from the soundness of VCU, as shown in [Lew73b, pp122,124,133]. Its com-
pleteness follows from the fact that Axiom 18 is the characteristic axiom for the
Uniformity Condition.
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Axiom 1 + (A=-*B)= (A — B)

Axiom 2 F (A =+ B) = (A =-"B)

Axiom 5 F (A=-*B)A (B =-"C)= (A=+"C)
Axiom 6 F ((AO—-B)AA)= B

Axiom 7+ O(Procedures)

Figure 20.2: Special Axioms of EL

However, since the propositional primitives of VCU-EL are TLA formulas,
this argues for the soundness and completeness of VCU-EL only relative to TLA.

TLA is complete for proof of formulas that occur during hierachical verifica-
tions in TLA (namely, of the form TLA.Spec; = TLA.Specs), and it is sound,
assuming that ZF set theory is sound [Lam94c].

Thus follows the relative soundness and completeness of VCU-EL from that of
VCU and TLA. EL itself is not complete, because the intended interpretation of
the relation =" is as the transitive closure of =>, whereas many other relations,
such as the universal relation on nodes and their Boolean combinations, also
satisfy Axioms 2 and 5. That this relation, which exists in every model of VCU-
EL, satisfies Axioms 2 and 5 shows that EL is sound.

EL itself contains some extra rules which are not necessarily derived rules of
VCU-EL, although many are. So the soundness and completeness of EL does
not necessarily follow from that of VCU — EL.

20.13 Special EL Rules

Although we could define the relation — using the tense-logical rules, we don’t
need to and haven’t. The EL rules as expressed here clearly do not form a
non-redundant set, since some of them follow from others, as noted in the text.
Furthermore, many of them are derived rules if non-temporal modalities of EL
are defined from [O—, as in Section 20.8. They are listed in Figures 20.3 and
20.4.

Of these,

e Axiom 1, Axiom 2, Axiom 5, Rule 14.2, Rule 14.3, and Rule 14.4 are not
derived rules of VCU-EL, because the operator =* does not appear in
VCU-EL; neither could it be reasonably defined in EL as far as we can see;

e Rule 14.6, Axiom 6, Rule 14.19, Rule 14.20, Rule 14.21 and Rule 15.5 are
derived rules of VCU-EL;
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Rule 142 A=-*B
A— B

Rule 143 A=~ B
A=*B
Rule 144 A =-*B
B =*C
A=*C
Rule 146 AO— B
—-A—-B
A= B

Rule 14.19 A
(AO— B)=(ANAB)

Rule 1420 AAB
-A— -8B

A=~ B

Figure 20.3: Special Rules of EL: Part 1
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Rule 14.21

Rule 14.22

Rule 14.23

Rule 15.5

Rule 15.7

Rule 15.9

(}_ TLAA = B)

A~ B

(Hypotheses A\ OProcedures) » < Event

(Hypotheses A O(Procedures)) = O(O Event)

Hypotheses
(Hypotheses A OProcedures) > < Event

O (< Event)

C
B
-C O—~ -B

-B O0— —-C

C o= B

Hypotheses

Procedures

(Hypotheses A OProcedures) » < Event
< Event

(Hypotheses N Procedures) 0= < Event
X

C

X-C

(CNA) =B

(XNA)O=B
Figure 20.4: Special Rules of EL: Part 2
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Rule 19.1 Conflict Resolution
Hypotheses
Hypotheses A OProcedures > ( A Reason(X, A) )

A Reason(X,—-A)

Hypotheses
Reason (X, A)
Reason(X,—A)
OPhases.Decision

> O(Decide(X, A) V Decide(X,—A))

> > > >

Decide(X, A)

Hypotheses
OProcedures

OPhases.Decision
Decide(X, A)

0= Decide(X, A)

> > > >

Rule 19.6 Inconsistency
Hypotheses
Hypotheses A OProcedures > L
Hypotheses > Phases.Mode.InMode

0 V Decide(X , Phases.Mode. ExitMode)
V Decide(X , Phases. Mode. RemainInMode)

The module Phases has the specific form described in Chapter 19,
and Phases. Decision consists of specific behavioral conflict-resolution
axioms.

Figure 20.5: Behavioral Rules of EL: Part 1
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Rule 19.9  Conflict-Exit
Hypotheses
Hypotheses A OProcedures > L
Hypotheses > Phases.Mode.InMode
Decide(X , X, Phases.Mode. ExitMode)

Hypotheses

OProcedures

OPhases. Decision

Decide(X, Phases.Mode.ExitMode)

> > > >

= Decide(X, X, Phases.Mode. ExitMode)

Rule 19.10 Conflict-Remain
Hypotheses
Hypotheses A OProcedures »— L
Hypotheses > Phases.Mode.InMode
Decide(X , X, Phases.Mode.RemainInMode)

Hypotheses

OProcedures

OPhases.Decision

Decide(X, Phases.Mode.RemainInMode)

> > > >

= Decide(X, Phases.Mode.RemainInMode)

The module Phases has the specific form described in Chapter 19,
and Phases. Decision consists of specific behavioral conflict-resolution
axioms.

Figure 20.6: Behavioral Rules of EL: Part 2
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e Rule 14.22 and Rule 14.23 have syntactically restricted components (‘Pro-

cedures’, ‘Event’) devised by the intent and judgement of the analyst, and
therefore cannot be derived rules of VCU-EL. Rule 14.23 is, however, ob-
viously derivable from Rule 14.22. Rule 14.22 itself is not derived, when
Procedures and Event are propositional variables, and O(P) is defined as
O(—=P = V) - here is a simple argument. The consequent of the rule is
equivalent to

O((Hypotheses N\O(P V V) = (CEV V)
Suppose we consider an instance in which Hypotheses = T, i.e.,
o@PvV) = (CEVY))
then this is equivalent to
oopPvVv V) = OKEVYV))
which in turn is equivalent in S5 to
OPVYV) = OKEVY))
The antecedent of the rule is equivalent to
OpP = OOCF
Suppose now we take P = —V: then the antecedent is
O-V = OCF

and the consequent is
O(CEV V))

A set of possible worlds in which there is a violation in some world, but in
which OF doesn’t hold in this world, satisfies the antecedent but not the
consequent. Therefore when P and E are not suitably restricted, this rule
is unsound. So in particular it is not derivable from VCU-EL.

For similar considerations as for Rule 14.23, Rule 15.7 is not a derived rule
of VCU-EL, and neither is Rule 15.9.

This completes the explanation of EL. We repeat the caveat that we do not
necessarily consider the set of special axioms and rules in Figures 20.2, 20.3 and
20.4, along with the axioms and rules of VCU-EL, to suffice for our practical
goals, because we do not necessarily have all the appropriate rules governing
sufficiency, 0= . Since we declined to define = as minimal sufficient causal
explanation, it is a matter for consideration, judgement and reasoned argument
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which rules for O= are appropriate. We do not claim to have given, or to have
found, all such appropriate considerations, therefore we leave open the possibility
of adding more rules for 0= to VCU-EL.

A particular extension may come from considering formulae such as

O(Decide(X, A) V Decide(X,—A)) A Decide(X, A) O= Decide(X,A) (20.20)

which involve a mixture of PARDIA primitives with VCU-EL primitives. This
formula says that if a decision between A and —A is procedurally required, and A
is decided, then these two facts alone explain why A was decided: the human had
to choose one or the other, and did so (rightly or wrongly). Which such formulas
could be added as axioms depends upon the reasoning given for their general
truth. We suggest that adding them would turn PARDIA from a classification
system into a model, because rather than simply classifying which cognitive states
a human might be in, they make assertions about how the presence of certain
cognitive and deontic states constitute an explanation of certain others. This is
more than simple classification of which states occurred.

Because of our reluctance to propose PARDIA as a model, we are also reluc-
tant to add formulas such as (20.20) as axioms. This means that we must establish
the truth of individual instances explicitly in a formal proof as required, as we
have done below in the formal proof of completeness and relative sufficiency of
[11]. However, we do not suggest that these formulas are false, or otherwise un-
worthy to become axioms. Those who think that PARDIA could be developed
into a worthwhile and adequate model for human processes in incident analysis
will see reason to add such formulas to EL. We don’t object to doing so.

20.14 Axioms and Processes for WBA

Certain special axioms must be included for each WBA analysis, namely that
(human) procedures and (machine) specifications are deontic axioms. These are
properly regarded not as axioms of EL itself, since various procedures or machine
specifications could be contradictory if care is not taken with scoping the variables
used. In any particular application of EL to perform a WBA, the following axioms
must be added, for each set of procedures or system specifications:

F O(Procedures)
F O(Spec)

Similarly, there are two ‘meta-axioms’ that are more properly processes to be
followed by the analyst in constructing a WBA, and are not themselves part of
the EL logic. These are

Ezplicitly add to the history those states (—E) in which E is an event,
O(E) is derivable, and E does not occur.




314 The Logic EL

For any B which has a causal factor (that is, for which there is an A such
that A = B is established), the set {A|A = B} must be a satisfactory
set of causal factors for B.

The difference between constructing proofs in EL. and proofs in, say, TLA
should be noted. A step in a TLA proof is always a theorem of TLA. The TLA
rules are rules of proof — if the hypotheses are TLA theorems then the consequents
are. Rules of proof are theoremhood-preserving rules. However, a step in an EL
proof of correctness and sufficiency of an explanation is not necessarily a theorem
of EL. For example, the truths of the matter about the incident to be explaining
occur as steps in an El proof of an explanation. These are mostly not theorems
of any logic! The EL rules are rules of inference — truth-preserving rules: if the
premisses are true, the conclusions are guaranteed to be true.

To understand the difference, one can consider the TLA rule of temporal
generalisation (TG): A/OA. If A is a theorem of the logic, then so is OA. This is
certainly valid — if one can prove something in TLA, then it is a temporal-logical
validity and thus holds everywhere; at all states in all models. Therefore so does
OA.

Now consider the same rule used for the modality O,4. Could we use A/O0A
(Necessitation) as a rule of inference in EL? Suppose A is any statement that
happens to be true. If we were to use Necessitation as a rule of inference, we
would be able to infer OA. That is, any truth is a necessary truth. But that
means that all alternative worlds have exactly the same truths as this one, and
that would mean that any sentence of the form (A = B) is true at all worlds
including the real world, or none (also including the real world) which in turn
would reduce the meaning of A O— B simply to A = B, which would destroy
our enterprise.

EL is a natural deduction system. One may make assumptions, and discharge
some of those assumptions according to certain inference rules. Or leave them
in. Every step in an EL proof is taken to be true; either true because assumed
so, or true because inferred from other statements. At the end of a proof, it
is convenient to list all assumptions. The constructor of the proof bears the
responsibility of ensuring that the assumptions are indeed all true.

20.15 VCU-EL Semantics Illustrated

We illustrate the semantics of the logic VCU-EL by means of the example in
Figure 20.7.

We see in Figure 20.7 ten ‘possible worlds’. One, in the center, is the ‘Real
World’, and the other possible worlds are called World 1 through World 9. Each
possible world consists of a temporal-logic model, a behavior, which consists of
an unending discrete linear sequence (the first three are indicated) of models for
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O—0—0=
O—0—0=
World 1
A false World 2
V true Atrue
B false

O—0O0—"0=
World 4

A false

V true

O—0—0=
World 3

A false

V true

Oo—0—"0=
Real World

A false

V true

O—0—0=
World 6

A false

V true

O—0—0=
World 9

A true

B true

o—0—0~

World 7
A false

V true

O—0—0=
World 8

A true

B false

Figure 20.7: Illustration of the Lewis Semantics

normal first-order logic in which all the variables, constants and state predicates
are interpreted. A state in the behavior, represented by a tiny circle, is one of
these first-order models. The sequence represents the succession of states in the
behavior, and an action holds between two adjacent states just in case the action
formula is true of the pair of two states, with ‘normal’ variables interpreted in
the first state and primed variables in its successor. We won’t be illustrating the
TLA semantics by means of Figure 20.7.

The relation < gea1 worid is illustrated by the ‘nearness rings’, indicating
the equivalence classes of possible worlds under the equivalence relation generated
by < Real World- There are four ‘nearness’ rings, that is, the nearest world to
the Real World is the Real World itself. The next, equal, nearest are World 3,
World 6 and World 7. Further away than these are (equally) World 4, World 5
and World 9. Finally, equal furthest away are World 1, World 2 and World 8.

Let us now determine the truth of A O0— B at Real World in this model of
VCU-EL. The semantics says that we must find the nearest world in which A is
true, and evaluate A = B on all worlds at that distance or nearer.

In the Real World, A is false, as it is in World 3, World 6 and World 7. In
the next ring, however, containing World 4, World 5 and World 9, there is a
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world — in fact two, World 5 and World 9 —in which A is true. So this nearness
ring bounds the set of worlds we have to look at to determine the truth of A O— B
at Real World: namely we need to evaluate A = B in Real World, World 3,
World 6, World 7,World 4, World 5and World 9. In fact, in all of these worlds,
A = B is true, because either A is false, or B is true. Hence A O— B is true at
Real World.

Notice that there are two worlds, World 2 and World 8, in which A = B is
false, because A is true and B is false. However, because these worlds are outside
the nearness ring in which the nearest worlds with A true lie, they play no role
in assessing the truth of A O— B.

However, they do play a role in assessing the truthof A = B = O4(A = B).
For this to be true, A = B must be true at all possible worlds, and since A = B
is false at World 2 and World 8, O4(A = B) is false.

In all the worlds in which A is false, namely Real World, World 1, World 3,
World 4, World 6, and World 7, V istrue. Hence A = V is true at all worlds,
ie., O4(—A = V) is true, and since O(4) = Oy(— = V), this means that
O(A) is true.

Notice that we have spoken of sentences Ty(...) and O(...) as being true
or false, rather than true-at-Real World, false-at-Real World. That is because
evaluation of the operator involves looking at all worlds to see whether something
is true in each. So if a sentence Oy4(...) and O(...) is true at any world, it is true
at all worlds. So we just might as well say ‘true’ or ‘false’. However, A O0— B
might very well be true at the Real World, as here, and false at some other world,
say World 1, because the nearness rings of World 1 do nto necessarily bear any
relation to the nearness rings of Real World.

20.16 Extensions and Modifications

The EL logic has stayed moderately stable during its use to perform the proof
of the example. It is, however, quite possible that the rules will need to be
modified somewhat in light of other needs. We do not rule out this possibility.
For example, one may consider it worthwhile to drop the < in the consequent of
hypothesis and conclusion to Rule 14.23 (also Rule 14.22).

20.16.1 Giving Priority to Causal Factors

During his consideration of the counterfactual analysis of causal statements, John
Mackie has argued in [Mac74, Ch. 2] for ways of assigning greater importance
to some sorts of causal factors rather than others. Suppose a factor is normally
present in similar circumstances to those of the accident circumstance, but in
which there was no accident, then even though it might have been a necessary
factor fulfilling the counterfactual semantics, we do not count it as such. For
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example, we do not usually count it a causal factor of an aircraft landing accident
that the aircraft took off some hours before; or that the aircraft was built at all.
Nevertheless, these events both satisfy the counterfactual semantics for being a
factor. Mackie uses the term causal field for the collection of such features.

We have not pursued any attempt to distinguish amongst causal factors except
for distinguishing those which themselves are not considered to have any factors
from those which are explained by other factors. This comes down implicitly to
considering the causal field in Mackie’s sense, and we have provided no guidelines
so far as to how to do so. This would be an obvious extension of WBA.

20.16.2 Closed World Assumptions

Accident reports use a closed-world assumption (CWA) , namely that either all
the significant events and states are known, or those that are not known are
known to be not known. Both the CWA and other non-monotonic reasoning
can be expressed in the ontology introduced above. WBA does not necessarily
suffer from this weakness (should it be considered to be a weakness), since one
starts a WBA from certain facts in temporal order, and completes an explanation
to a desired degree of granularity. Either one has all the facts needed for that
explanation, or one becomes aware of ignorance and uses the PAD approach to
signal the indeterminacy. However, implicitly a CWA is still made. One may
determine that the reason an aircraft crashed was an inflight breakup initiated
by a weak structural member, but one does not entertain the possibility that
there were little green men sitting on the wing pulling it apart. That is a closed
world assumption — that one does not and can not consider all the possible events
that could have caused a given event. One identifies only those which one has
reason to suspect were there. One can consider this a form of Occam’s Razor if
one likes, but it is a CWA of some sort.

Intuitively, it seems to make little sense to worry about this sort of non-
monotonicity. This kind of assumption seems to be endemic to any form of
causal explanation of historical events.

20.16.3 Other Non-Monotonicity

In principle, the ‘world’ consists only of states or events obtained directly from
instruments like cockpit voice recorder (CVR) and digital flight data recorder
(DFDR, ‘black box’); photographs; on-site investigation of wreckage; states,
events or processes derivable by temporal, causal and deontic reasoning from
these. Formally, for every ‘new’ node (representing new knowledge of one of these
states, events or processes) we introduce in our analysis, we have to check whether
former reasoning is still valid (there are thus two cases: simple incompleteness
and non-monotonicity - see below). Whenever we make an assumption about a
cause for a state/event/process, we limit the explanatory power of the system to
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explanations which fulfil this assumption. To keep this limitation within bounds
(we prefer to base analysis on formal argumentation rather than speculation),
it would make sense formally to clone the ‘existing’ world before we introduce
the new information, as in the method of semantic tableaux. We would need
to control the potential exponential growth of the number of worlds to consider.
Alternatively, we can be content with justifying ‘reasonable’ assumptions and
ignore alternatives, but we may have to be prepared to revise these in light of
further discovery (non-monotonicity). Examples:—

Cali (incompleteness, monotonic reasoning):
DFDR recordings show that the machine turned left for 90
seconds. This could not be explained, until an undamaged
FMC was discovered and its non-volatile memory decoded.
In this case, the WB-method would yield an incomplete,
but causally correct graph, which contains all information
discovered, but not including grounds for the left turn.
The additional information gleaned from the FMC several
months after the accident can be introduced to ‘complete’
the graph. Such ‘completions’ result in addidtional sub-
graphs, but do not change the rest of the graph.

Lauda Air, Thailand (assumption, non-
monotonic):

Evidence from CVR that reverse thrust (RT) was
‘deployed’; but there’s an interlock.

Conclusion: upset cannot be directly explained. Sub-
sequently found a failure mode of the interlock, which
in principle could allow RT to actuate in flight. Report
contains no probable cause, but considers this to be a
likely scenario.

Mont Ste. Odile, Strasbourg (assumption, non-
monotonic):

Autopilot modes not available on DFDR; flight path
shows rapid descent starting exactly at FAF. Descent
rate in fpm is almost identical with required flight path
angle in degrees; also the autopilot descent mode would
have been engaged at FAF, where divergent behavior
started. Autopilot mode control is unlabelled toggle;
mode annunciation is via small letters, rate/angle larger
figures. Again, this ‘likely cause’ is presumed.

Summary: All accident reports make a CWA: the relevant facts are those we
know plus those we know we don’t know. Assumptions about ‘likely happenings’
introduce either an extra (formal) modal dimension or non-monotonicity.

20.16.4 Casual Defeasibility

It turns out that in practical use in accident reports, the notion of cause is defea-
sible by properties of social institutions. For example, an instrument approach
is designed to be used in conditions of low or absent visibility by all pilots; a
pilot is obligated to decline the approach, or to break it off, if it cannot be
flown ‘safely’ (within hisher abilities). Suppose an aircraft crashes into terrain
on approach while under full control (so-called CFIT accidents, for example the
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August 1997 Korean Air accident in Guam). This happens mostly, if not entirely,
in conditions of low or absent visibility (night, cloudy weather). According to
the counterfactual semantics, this absent visibility is a cause (had the pilot been
able to see where (s)he was, (s)he would have avoided the terrain). But according
to accident investigators, it is not a cause, because the approach procedure was
designed to be safe in precisely these conditions. So certain institutional facts
defeat the obvious physical causality. Is this always so? No — had the approach
procedure not been designed to be safe (say, there was none, but the pilot was
trying anyway), the low visibility remains a causal factor — to which is added the
pilot misjudgement.
We do not know yet how to handle this non-monotonicity in WBA.

20.16.5 Summary

The notion of causal field and assigning weights to causal factors, considered
in Section 20.16.1, will need to be addressed explicitly in the further formal
development of WBA. The form of CWA considered in Section 20.16.2 is not one
that we imagine we shall ever worry about in WBA. We illustrated how to use
PADs in Chapter 17 to handle the kinds of indeterminacy considered in Section
20.16.3; whether this method always suffices for these kinds of indeterminacy will
be determined by experience. However, the defeasibility recounted in Section
20.16.4 is significant, and WBA cannot yet handle it. We consider this to be a
weakness, but have no remedy to hand at present. We are loathe to build in any of
the current approaches to defeasible reasoning because of their logical complexity
and because of the problems with formal defeasible reasoning that have not yet

been solved. It does appear, though, that at some time some version will have to
be included.
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