
CHAPTER 11
Littlewood and Rushby’s Approach Through Specialist
Architecture

11.1 Evaluating a System Through Running It

Testing involves giving a system some judiciously chosen input values and seeing
what behavior is produced. But testing is not the only way a system is evaluated by
running it. Systems are also used, and if a system has been used for long enough,
maybe one can say enough about the real behavior of a component when running
to use that component somewhere else. A technical term for this in the IEC 61508
standard is «proven in use». An assessor will very likely be presented with data about
a system or system component as it has been run, and must somehow judge the
system or component as fit for purpose. This is a problematic area, in which scientific
results are often at variance with the reality of attempted evaluation.

Some guidance for «proven in use» is given in the standard, in Part 7 Annex D,
and of course it is logically the same guidance which would be given for drawing
conclusions from tests. But it is not clear how useful the guidance really is. (Actually,
some of us believe it is clear: it’s not very useful!)

The guidance is based on classical frequentist reasoning. For example, one may be
able to conclude by performing nearly 500,000 operational hours without seeing a
failure that one has attained a 99% confidence level that the software will run for
100,000 hours without a failure. But 100,000 hours without failure is the absolutely
lowest level at which the standard recognises a reliability condition for critical



136 11 Littlewood and Rushby’s Approach Through Specialist Architecture

hardware (SIL 1 HW is to run between 100,000 hours and 1 million hours without
failure). And 500,000 operational hours are hard to come by, because one must
be sure that the software is exactly the same throughout (no updated versions!).
Furthermore, the operational conditions (environment and distribution of inputs)
must be exactly the same as for the intended future use, and the oracle for detecting
failure must have been perfect! Subtle differences in operational use can invalidate
any hoped-for conclusion. And one failure in this time invalidates the positive
conclusion one might hope to draw, so one needs to be sure any failure has been
detected: a perfect oracle. These conditions on versions and operational profile are
strenuous enough to make the guidance all but inapplicable in most cases for software
[1, 5].

Since that is so, can we relax the conditions somewhat, and relax our confidence
comparatively? The answer is simple but firm: no! The general reason, as we all
should know, is that discrete systems controlled by software have sharp choice points,
at which behavior is highly discontinuous – and lots of them. You cannot just alter an
ops profile «a little bit» and hope the resulting behavior will only alter «a little bit»:
the statistical criterion is «no failures», not «one or two».

11.2 So what can we do that is more practical?

There are considerable sources of uncertainty in evaluating software. There are
versions: does a new, modified «update» share relevant properties of the original
version, such as freedom from behavior which would or could cause a dangerous
failure? Say, we have seen software from such-and-such a developer before, and they
have a detailed track record for quality. How confident may we be that their new
software under evaluation attains the level of quality we have come to expect from
them?

I think that we might well have to approach this issue step by careful step. Not
in general, as attempted by Part 7 Annex D, but through many particular instances.
Some recent work of Littlewood and Rushby have produced some guidance on how
a statistical evaluation explicitly incorporating uncertainty might work, for a very
specific architecture [4]. I include a brief sketch here with permission.



11.3 Developing Confidence in Certain Architectures Through Practical Statistical
Reasoning: Littlewood and Rushby

137

11.3 Developing Confidence in Certain Architectures Through
Practical Statistical Reasoning: Littlewood and Rushby

In [4] Littlewood and Rushby consider certain types of so-called 1oo2 divergent
architectures. 1oo2 divergent architectures are common, although not ubiquitous, in
critical control systems and protection systems in diverse industries such as nuclear
power, aviation, rail and medical devices.

The calculations concern two-channel architectures in which (i) the system as a
whole has at least one guaranteed “safe state”, (ii) one channel, Channel A, provides
the required functionality in normal operations, and is as complex as necessary, and
(iii) the second channel, Channel B, is very simple, provides limited functionality,
but in particular the function of bringing the system into a safe state if Channel A
fails dangerously (here the system needs to include a perfect oracle for Channel
A’s “health”). Both Channels are “hot”. They are assumed to be SW-based, so SW
reliability models are appropriate. I consider here demand-based functionality only.

Assumption: the system is such that it does not fail dangerously if either Channel A
does not fail or Channel B does not fail.

A key property of the architecture is that Channel B is arguably perfect. The
functionality implemented in Channel A is assumed to be complex enough that one
can construct an argument for its reliability (in terms of probability of dangerous
failure on demand, pdfd), but its perfection is implausible.

There are two kinds of probability calculation involved, technically called aleatory
and epistemic, the terms used by Littlewood and Rushby.

Aleatory probabilities are those taken to be inherent in the situation itself, given a
sample space. For example, in a sequence of rolls of a fair die, it is taken that each
face appears according to a uniform distribution: each of the six faces has an aleatory
probability of 1/6 of appearing on any given roll. The aleatory probability of, say, a
dangerous failure of the system, will in general not be known.

The epistemic probability reflects what an assessor can know about the system
behavior, given the evidence. The assessment of the system is based on the epistemic
probability as calculated by the assessor.

The crucial practical point is as follows. Although the aleatory probability can likely
not be known, its form is determined by the architecture, and this form leads to a



138 11 Littlewood and Rushby’s Approach Through Specialist Architecture

particularly simple formula for the epistemic probability, which is easily calculated
by any engineer (it is pure arithmetic). Furthermore, the level of evidence required
to attain high confidence in appropriately high levels of freedom from dangerous
behavior appears to be practical.

Let the aleatory probability of dangerous failure on demand of Channel A on
a randomly-selected input be denoted by pdfdA, and the aleatory probability that
Channel B is not perfect by pnpB . The probability pdfdA is the usual kind of well-
understood probability random variable. The probability of non-perfection of B, pnpB

, can also be given a frequentist interpretation, as the probability, say, that a SW-
subsystem of this size with this kind of functionality, developed using such-and-such
methods, is not perfect. Let the (unknown) values of these probabilities be pA ,
respectively pB .

Littlewood and Rushby show that the probability that the system fails, that is, that
Channel A fails dangerously, and that Channel B also fails at this point, is bounded
above by (pA ⇥ pB ).

This means that the probability of dangerous failure of Channel A is conditionally
independent of the probability of imperfection of Channel B in the architecture
presented. (This calculation is performed on the conservative assumption not only
that Channel B is imperfect, given by pB , but that it actually does fail, given a
dangerous failure on demand of Channel A.)

The question is, now, what epistemic probability an assessor should assign to a
system failure on demand. Most general is that an assessor has a joint probability
distribution F (pA, pB ). The probability that the system fails on a random demand
is then

R
(pA ⇥ pB )dF (pA, pB ). If the assessors’ beliefs are independent, so that

F (pA, pB ) = F (pA)⇥ F (pB ), then
Z

(pA ⇥ pB )dF (pA, pB ) =

Z
pAdF (pA)⇥

Z
pBdF (pB ) = PA ⇥ PB

The question is whether it is reasonable for an assessor to believe that flaws in
Channel A and imperfections in Channel B are independent, and the answer is:
likely no. For example, misinterpretations of the engineering requirements may be a
common cause of Channel A failing and Channel B not being perfect. Similarly, shared
mechanisms and higher-level mechanisms could fail, such as the communications
of the coordination between Channels A and B to the encompassing system. Such a
failure would also constitute a common-cause failure.



11.3 Developing Confidence in Certain Architectures Through Practical Statistical
Reasoning: Littlewood and Rushby

139

However, Littlewood and Rushby point out that common-cause failures are the only
plausible mechanism by which the joint distribution F (pA, pB ) may not be factored
as above. They proceed as follows.

Let C be the assessor’s a priori estimate of the probability of common-cause failure of
both channels. Then C is placed at point (1,1) in the probability space (meaning: both
channels fail with certainty during a common-cause failure). It is further assumed
that the probability of common-cause failure is independent of the probability of
individual happenstance failure of each channel simultaneously.

The probability that the system fails on a random demand is then given by

C + (1� C )⇥ (PA)⇤ ⇥ (PB)⇤

where (.)⇤ denotes the mean value of the posterior distribution.

(Strictly speaking, (PA)⇤ is the conditional distribution given that A is not certain to
fail, and (PB )⇤ the conditional distribution given that B is not certain to be imperfect.
This technical subtlety does not affect the use to which we put this estimate below.)

This is a particularly simple formula, and it is applicable, as follows.

An Illustration

There are claim limits established in specific safety-relevant or -critical engineering
domains; for example, in the atomic power industry in Great Britain there is a claim
limit of 10�5 for the probability of common-cause faults per operating hour (ophour).
This means that one may not claim a lower probability than this for common-cause
faults in a fit-for-purpose certification exercise. This gives us a lowest value for C of
10�5 in the above formula.

To estimate (PA)⇤, observe that it is possible to estimate it to O(10�4) per op-hour
through using statistically-valid random testing (“statistically-valid” means here that
test case selection probabilities are exactly those that are (to be) encountered during
operations, and that the oracle, the device which tells whether a test case has passed
or failed, is perfect) [5]. However, it may be easier to obtain an estimate more like
O(10�3) in many cases, so let us suppose that we have obtained an estimate for (PA)⇤

of 10�3.

To estimate (PB )⇤ is a little more unusual. The posterior probability that Channel
B is imperfect is affected by the assessment criteria used for Channel B. For example,

(I) The theorem prover, model checker, or whatever other tools used to perform



140 11 Littlewood and Rushby’s Approach Through Specialist Architecture

rigorous checks in II may be unsound. (II) The requirements may be misunderstood.
However, this event is included in the estimate of C and thus plays no further role here.
(III) The requirements, use assumptions, and design may be formulated incompletely
or incorrectly. This is further divided into three cases: (a) the specification is incon-
sistent (then no system can be built to this spec!); (b) elements of the specification
may be wrong (although the spec is consistent); (c) the formal specification and
verification has discontinuities in it, or is otherwise incomplete.

One can argue that an assessor can form a posteriori judgements about these
probabilities which would be adequate to estimate (PB)⇤ to values in the region of
10�3. (To reach this figure from an estimate of the likelihood of II, III, recall we are
assuming conservatively that, if Channel B is imperfect, it will fail when Channel A
fails.)

Suppose, then, that we have achieved a posteriori estimates such as these for (PA)⇤

and (PB )⇤. It follows that the probability of dangerous failure of the system is given
by

C + (1� C )⇥ (PA)⇤ ⇥ (PB)⇤

that is

10�5 + (1� 10�5)⇥ 10�3 ⇥ 10�3 ⇠ 1.1⇥ 10� 5

We have thereby constructed a high degree of confidence in the dangerous-failure-
freeness of a 1oo2 system by combining two lower degrees of confidence that attach
to each channel separately.



Bibliography

[1] R. Butler and G. Finelli, The Infeasibility of Quantifying the Reliability of Life-
Critical Real-Time Software, IEEE Trans. Soft. Eng., vol. 19(1), January 1993.

[2] International Electrotechnical Commission, IEC 61508, Functional safety of
electrical/electronic/programmable electronic safety-related systems, 7 parts, 2010.

[3] Peter Bernard Ladkin, An Overview of IEC 61508 on E/E/PE Functional Safety.
Available at http://www.causalis.com/IEC61508FunctionalSafety.pdf , Causalis Limited,
2008.

[4] Bev Littlewood and John Rushby, Reasoning about the Reliability of Diverse Two-
Channel Systems in which One Channel is “Possibly Perfect”, IEEE Transactions on
Software Engineering, 38(5), pp. 1178–1194, 2011.

[5] Bev Littlewood and Lorenzo Strigini, Validation of Ultra-High Dependability for
Software-based Systems, Communications of the ACM, vol. 36(11), pp. 69-80,
November 1993.


