CHAPTER 3

Objects, Properties, Relations, Assertions - OPRA

In order to analyse any system and its environment for its safety properties, its hazards
and the possible consequences, it is necessary to write things down. What you write
down will be descriptions, more or less exact, of how a system is intended to work:
what parts it has, how these parts interact, what properties they have and relations to
each other, and then eventually to describe what you thing may go wrong or right.

It is important to write these descriptions accurately, and to maintain awareness
on what you are emphasising and what you are ignoring. For what you ignore may
turn out to be important. In any case, it is a good idea to do about these system
descriptions methodically. I give here some examples of how to go about doing that.

3.1 The Pressure Tank

We commence by considering a pressure tank, a canonical example since its appear-
ance in the Fault Tree Handbook [14].

First, we perform the first step of an OHA, identifying the objects, their properties
and the relations (OPR) amongst them that will be subject to the hazard analysis at
the starting level (reification)

The Pressure Tank The simple pressure tank is shown in Figure 5.1. It contains
three input streams, for steam, hydrocarbon and catalyst, on the left. Each stream is
controlled by a valve. The tank itself has a pressure sensor, shown above the tank,
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Figure 3.1: The Pressure Tank Without Safety Mechanisms

not currently connected to anything. It contains three output streams, one for the
normal output of the product and two vents.

An Accident Informally, an accident is an event which results in possible injury or
death to people, or damage to the environment in some way. If a formal definition
of terms is required, and at some point it will be, Chapter 9 contains the terms and
their explanations which we use here. These differ in some ways from the vocabulary
used in the international functional safety standard for electrical, electronic and
programmable electronic equipment, IEC 61508:2010 [6], which we shall consider
later.

This pressure tank has a steam input line (we can assume: it is drawn as one
and contains a symbol for a valve), which could rupture and theoretically cause
injury to nearby people; it likely has hot sections (for example an uninsulated steam
pipe) which could injure someone who comes into contact with it; maybe very hot
sections that could cause other sorts of damage. Pressure tanks are also susceptible
to overpressure, which results in rupture that may have a very sudden character,
similar to an explosion, resulting not only in physical damage through impact of parts
with the surroundings, but also the uncontrolled release of potentially damaging
substances into the local atmosphere.

In our later analysis, as an example we shall be concentrating on just the
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overpressure-rupture event as the dangerous event likely to result in damage - the
accident event in our terminology.

The severity of the accident event will depend upon, for example, how many people
are in the neighborhood of the tank when it ruptures, and how effluent discharged
through the rupture is contained. Most installations will install a pressure tank with
possibly damaging contents in some sort of containment structure, as well as restrict
the access of people to the containment structure when the tank is in operation.
Neither of these mitigation measures are expressible in the preliminary OPRA, so they
will not arise in our current analysis, for we do not refine beyond the original OPRA.
This is consistent with the way that the other sources consider the pressure tank when
constructing the preliminary fault trees. OHA will go further during the refinement
process, and other practical hazard analysis methods will also identify the possibility
of damage mitigation through containment and restriction of personnel, for these are
standard mitigation techniques throughout the process industries. We are concerned
here with avoidance of the accident event, not mitigation of its severity.

Preliminary OPRA The design has been given to us by means of a labelled diagram.
Given the manifest objects in the diagram, we can specify certain properties and pred-
icates amongst the components of the system through general physical considerations,
for example the quantity, temperature and pressure of steam, hydrocarbon, catalyst,
and product; the open/closed states of the valves and maybe even which components
(tubes, tank, valves) are fulfilling their specification (which is not given here) and
which not.

There are other components, such as joints, screws, surface coatings, controlled
climate, and so on, which we are not given in the diagram and thus which do not
belong to the preliminary OPRA.

At the first stage, we therefore do not assess the state or behavior of these compo-
nents, although such might be a significant factor in any real accident behavior. For
example, the pressure tank may rupture because of high-, not over-pressure, which
causes a weak riveted joint in the vessel, that fails to fulfil its specification, to give
way. One cannot infer anything about things one is not given, or properties of which
one is not made aware. Thus weakness of joints because of non-specification riveting
are not part of the preliminary OPRA.
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Objects There are quite a few objects to be identified from the diagram, even for so
apparently simple an example. We list the names we shall give them and leave the
identification of the objects from the names as an exercise for the reader.

* Tank

* SteamPipe

* HCPipe

* CatalystPipe

* ProductOutPipe

* VentPipel

* VentPipe2

* TankPressureSensor
* SteamPipeValve

* HCPipeValve

* CatalystPipeValve
* ProductOutPipeValve
* VentPipelValve

* VentPipe2Valve

* Steam

* HC

* Catalyst

* Product

Properties The following properties pertain to certain objects in this list. They
were obtained through considering general physical principles concerning the objects
above and their functions, as we did when considering accident events. We again
leave the identification of the properties as an exercise.

* Intact and its contrary Ruptured, to Tank, SteamPipe, HCPipe, CatalystPipe,
ProductOutPipe, VentPipel, VentPipe2;

* Open, Closed and Partopen, to SteamPipeValve HCPipeValve CatalystPipeValve
ProductOutPipeValve VentPipelValve VentPipe2Valve;
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» Temperature, Pressure, Quantity, to Steam HC Catalyst Product. Although we
have called these properties, in fact they are what is known as fluents, taking
values at times, potentially different values at different times.

3.2 OPRA of the Communications Bus

In Chapter 1 I introduced a generic automotive communications bus, pictured again
in Figure 3.2. We can begin to list the objects, properties, relations and connecting
assertions (here, we shall introduced meaning postulates, which declare equivalence of
meaning between some of the terms introduced). To obtain the first OPRA collection,
I consider how such a bus works, using general information about computer networks
and digital transmission devices taken, say from [13], and general knowledge about
sensor/controller networks, say from [2].

Wheel Speed Brake Power
Sensor Sensor
NIC NIC
Communications
Bus
NIC NIC NIC
Left Front Braking Steerin

Wheel Command 9

. Module

Suspension Module

Figure 3.2: The Generic Communications Bus, Again
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Sensors measure current values of such phenomena as force at wheels, rotational
speed of wheels, position of steering frames, and braking. They produce digital values
which are transmitted via the bus to command-units such as steering, motor and
brake controllers. These controllers in turn generate commands which are conveyed
in digital form to actuators which implement these commands at the steering, motor
or brakes. The communication bus is a common medium through which all this
information is conveyed.

A single batch of digital information from a single device which is transmitted
as a unit will be called a message. At this level we shall be abstracting from the
electrical waveform which we anticipate to be present on the bus, and considering
its interpretation as a sequence of zeros and ones. There are, however, hazards and
failures associated with the interpretation of electrical signals as digital information,
such as so-called Byzantine failures [1, 2]. In our considerations here, we shall be
ignoring such failures although they obviously have to be taken into account at some
point.

Each device, sensor, controller or actuator, is connected to the bus through a
Network Interface Controller (NIC). Among the tasks of a NIC is to format the
information coming from the sensor in a form appropriate for transmission on the
bus using its protocols, for example, adding a unique identifier for the source of the
message and its intended recipients. The NIC also coordinates the act of transmitting
the message, for example, waiting for an appropriate time slot if the bus is time-
triggered; also synchronising its internal clock with those of other NICs so that all
NICs have a similar understanding of which times belong to which time slots. Non-
time-triggered NICs will also implement a protocol to avoid or reconcile collisions
between messages on the bus, which will happen if two NICs try to transmit almost
simultaneously.

At this point, one could start to perform a preliminary assessment of the possible
failures and dangerous failures of the communication bus. This is often called
by system safety engineers a Preliminary Hazard Analysis, or PHA. At this point,
though, we do not know very much about the communication bus or the system (the
environment) in which it operates. I have said it is for use in road transport, and
mentioned brakes, steering and motor, but most of the details of how it is intended to
operate are not yet specified.

Elsewhere, we have made much of the difference between a system state (a property
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of a system) and an event (a change of state, represented best by two states, a before
state and an after state) [8]. For the purpose of analysing how an accident can
possibly result from system behavior, it will at first be helpful not to distinguish
these too carefully: let me call either a state or an event a happenstance and call a
happenstance hazardous if the system environment could be such that an accident
will inevitably ensue.

For example, a failure of the vehicle to steer left on a command to do so could
inevitably result in an accident if the road bends sharply left, and has a thick wall on
its right hand side! Similarly, a failure to brake on command inevitably results in an
accident if there is a wall right in front of the vehicle. We can call such happenstance,
the failure to deliver these commands, as a hazardous happenstance.

We can imagine that, if a command is given to apply the brakes, and that command
is not received by the brake actuators, and there is only this single command-path,
through messages in the communication bus, between brake command and actuation,
and no alternative physical connection, say through a hydraulic-mechanical system,
that the brakes will not be applied. I think we can say that this represents a potential
danger, that if the brakes do not go on when a driver commands, this is a hazardous
happenstance. Similarly, if the steering is only commanded through the communica-
tions bus, and not also by an alternative physical connection, and the command to
steer left is not received by the steering actuator(s), then we can imagine the vehicle
going straight on, and leaving the road, instead of steering left through a bend in
the road; again a potential danger. So we may judge that, in these cases, failure to
deliver a specific message is a hazardous happenstance.

To continue, we may imagine that if a command to brake harder arrives at the
brake actuator and is read as brake more lightly, that this is a hazardous happenstance.
Or if a command to steer left arrives at the steering actuator as a command to steer
right. So we may judge that, in some cases, the corruption of a message during
transmission, or a false reading of its contents by an actuator, could lead directly to
an accident and thus can be classified as a hazardous happenstance.

We may conclude that loss of a message may be a hazardous happenstance, and
corruption of a message may be a hazardous happenstance, as also may be the
incorrect reading of a message by a NIC. These may not be the only hazardous
happenstances.

We can’t go much more into the details of which kinds of loss are hazardous, and
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which kinds of corruption, without knowing precisely what is connected to the bus,
or the subcomponent specifications. We are considering a generic bus, along with
generic NIC specifications, which is going to be used in varied applications by various
manufacturers. We know through our considerations at this point only that message
loss and message corruption are generic hazardous happenstance.

It may occur to us now to ask what kinds of properties, of what kinds of things
(messages), loss and corruption are. We are speaking about information which is
conveyed by messages: commands, values and so on. We are speaking, then, of
the informational content, the digital interpretation, of whatever passes along the
medium as the message is transmitted (and, as mentioned previously, not necessarily
of the precise waveform which is actually put on the medium by electronic means by
the NICs. We are ignoring here such arbitration difficulties, as when a waveform lies
on the boundary of what counts as a one bit and what counts as a zero; furthermore
we might know of so-called Byzantine errors, in which, say, a waveform on an
arbitration boundary is interpreted as a one bit by one device and a zero bit by
another).

3.3 Level O

An OPRA will progress through the process of formal refinement in OHA. We call
these progressions levels, and the initial level is Level 0. Level O is a very abstract
view of the system. As in hierarchical design, a lower level will define objects and
properties at a higher level by means of its own objects and properties. For example,
in a hierarchical design, a natural number may be defined in terms of a positive-
integer number range, and an integer number range in terms of sequences of bits,
with operations on bits implementing the mathematical operations on integers. It
must then be mathematically proved (verified) that the operations on bits indeed
implement the operations on integers at the higher level. Similarly, in a formal
refinement it must be verified that the lower level objects, properties and relations
indeed implement the higher level objects, properties and relations.

If we were to consider a message as a waveform, its description would be physically
quite complicated, and we would have to worry about properties such as attentuation,
arbitration boundaries, and so forth. If we are to consider a message as consisting
of information in the form of data, ultimately encoded as bits, then its description is



3.3 Level 0 55

much simpler. We must say only what data is to be carried, and not be concerned at
this stage with how this is carried out.

So we are considering messages abstractly. Messages may be lost, for whatever
reasons: a message is lost if it is sent, but no part received by the receiver. Message-
content may be corrupted; that is, the content may be read differently by the receiver
than was written by the sender, for whatever reasons. What else could happen with
messages at this level of abstraction? Symmetrically to loss, they could be created:
that is, a message could be received that was not sent. This may seem somewhat
fanciful, until one considers that duplicating a message generates a message that
was received (in the second version) but not sent (only the first was sent). Whether
messages could be generated in the system, say, by outside electrical influences on
the medium, is a matter for more detailed consideration at other stages.

We now define the formal vocabulary at Level 0. That is to say, object types,
properties which objects of that type are to have, and relations between objects of
those types.

3.3.1 Objects

So far, we have the following types of objects: medium (Bus), NICs, messages (msgs).
There is only one Bus, but there are typically many NICs and many msgs. Thus are
Bus, NIC, msg types of objects, not names for specific objects (although Bus could be
considered as one, since there is just one Bus). We now consider the properties which
objects of these types may have.

3.3.2 Properties

Bus. The bus itself transmits messages. This is a relation to messages, though, not a
property of the bus itself. A property which the bus has is its integrity: is it doing its
transmissive job, or is it broken, cut or otherwise compromised?

We thus have the following property: Integrity(Bus), where we write the object
type in the parameter position; it might be preferable to write, similarly to type
declarations in programming languages, Integrity(X: Bus).

NIC. The NIC assembles messages from its attached device and transmits the assem-
bled messages to/on the bus. It also receives messages from the bus, disassembles
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H Objects ‘ Properties H

Bus Integrity

NIC Integrity
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Figure 3.3: Objects and Their Properties

them and transmits relevant information further to its attached device. If it performs
this task as it is specified, and (we hope!) thereby designed to do, it retains its
integrity. If not, it has lost it.

We have the following property: Integrity(NIC). Again, it might be preferable to
write Integrity(Y: NIC), but it seems to me that we can just as well use obvious names
such as NICI1, NIC2, etc, to indicate both an object and its type, at this level of
discourse. I shall do so, also with msgs, without being much concerned about the
exact syntax.

Msg. As we discussed, a message has content. It also has length, or size. Since the
system is real-time, it can be that certain messages (for example, to steer, or to brake)
have a deadline by which they must reach their receiver NIC.

We have the following properties: Content(msg), Size(msg), Deadline(msg).

3.3.3 Relations

A NIC may be attached or not to the Bus. We take a NIC to be attached when it
receives messages intended for it as receiver, and transmits on the Bus messages
which its attached device sends. Similarly a message may be on the Bus, when the
waveform corresponding to the message is travelling along the medium. A message
may be in a NIC, when it is being assembled or disassembled. It is also sent by a NIC
and received by a NIC, during which time it, or rather part of it, is also on the Bus.

We thus have the following relations: Attached(NIC,Bus), On(msg,Bus),
In(msg,NIC), Sending(msg,NIC), Receiving(msg,NIC).

The relations may be arrayed in a table as in Figure 3.4, in which an X indicates
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H Relation ‘ Bus ‘ NIC ‘ msg H

Attached | X X

On X X
In X X
Sending X X
Receiving X X

Figure 3.4: Relations Amongst Types of Objects

that the relation has the object type as an argument:

Figures 3.3 and 3.4, then, constitute the definition of the vocabulary for Level 0 of
the communications bus and its analysis.

3.3.4 Meaning Postulates

The property of being Sent or being Received by a NIC entails that a msg is at the same
time On the bus. Also that it is not yet In the NIC. This is part of what we mean by
asserting Sent or Received. It could be otherwise: we could have intended received
to mean that a msg is in the NIC, having been completely read from the bus by the
NIC, and therefore no longer partly On the Bus. But we didn’t choose this option; we
chose the former.

We have to mark this distinction somehow: we have to say what we mean by use
of the words. We do this in part through enumerating logical relations between the
relations, properties and objects we have thus denoted. We shall call these logical
assertions of part-meaning meaning postulates.

We have so far the following partial meaning postulates (they are partial because
they do not define an equivalence of meaning, but only state an implication):

Sending(msg,NIC) = On(msg,Bus)
Receiving(msg,NIC) = On(msg,Bus)

We may, if we wish, also define certain states of the system in terms of what
has happened and what is to happen, using tense-logical operators Sometime-Past,
Always-Past, Sometime-Future and Always-Future. We have to be somewhat careful,
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however, because use of the tense-logical operators does complicate the logic of
the situation somewhat: tense logic is much less well-developed in terms of usable
automated or semi-automated tools and techniques than predicate or propositional
logic. If we do use tense logic, we might wish to define the following meaning
postulates for further properties that might turn out to be of interest:

Sent(msg,NIC)
<
NOT Sending(msg,NIC) AND Sometime-Past(Sending(msg,NIC))

Received(msg,NIC)
<
Sometime-Past(Receiving(msg,NIC)) AND NOT On(msg,Bus)

These two predicates are not symmetric. It should be obvious that a message that
has been Received by its NIC is no longer On the bus. However, a message can have
been Sent and still be in transit, so it is On the bus. Or it might have been Sent and
already Received, in which case it is no longer On the bus. And we shall see, later,
that not expressing the status of the message on the medium after it has been Sent
will enable us to express the loss of a message, which we have already identified as a
hazardous happenstance.

We should keep in mind that the point of the exercise will be to identify and analyse
hazards that occur with the communications bus, which is concerned with the danger
of real-life use, and not to axiomatise all properties of the bus, which is a maybe
useful exercise for developing a facility with logical expression, but rather more work
than may strictly be needed to find out how things may go dangerously wrong.

3.4 OPRA, Refinement and OHA of Train Dispatching

3.4.1 Introduction

In his PhD thesis, Bernd Sieker formalised the German train-dispatching protocol
for non-state-owned railways (“Zugleitbetrieb”) using Ontological Hazard Analysis
(OHA) [17]. Briefly, OHA involves

e OPRA (Level 0)
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* performing a hazard analysis using this Level-0 OPRA

» formulating safety requirements at Level O

* using formal refinement to generate a further OPRA (Level 1)
» performing a hazard analysis using Level-1 OPRA

* assuring the safety requirements formulated at Level O are assured at Level 1
(here, by formal proof using formal logic)

» formulating new Level-1 safety requirements should they be necessary
* iterating this process until done.

Our focus here is on the sequence of OPRA levels which are created in this analysis.
However, it is worth indicating what other considerations come into play in this
development, for example the logical analysis and logical proof which is used to
generate the original safety requirements at Level 0, and to ensure that the safety
requirements at a further Level logically imply the safety requirements formulated
at Level O (traceability). Some of this will be indicated here. Also pertinent are the
informatics technologies which come into play in the analysis, such as formal logic,
formal refinement, state machines, message flow graphs - all technologies which
might be familiar to informaticians but completely foreign to most railway engineers.
Being successful in devising reliable digital systems for railways really does require
understanding formal logic, formal refinement, state machines, message flow graphs,
the radio cell-based communication protocol GSM-R based on the cell-phone network
GSM protocols, encryption-key management, the Eurobalise electronic milestones,
the European Train Control System specification (ETCS) and the European Rail Traffic
Management System (ERTMS, in short ETCS+GSM-R). It’s getting to be a tough
world!

German administrative law [18] sets the requirements for how train dispatching is
to be performed on non-state-owned railways. Sieker derived a system, expressed
in SPARK source code, which provably implements a (completed version of) this
legal protocol. This process is described here. It seemed useful to go through the
derivation, because not only is Level 0 fairly trivial and Level 4 fairly complicated, but
the development of the Levels and derivation of the safety requirements illustrates
the formal refinement process in OHA by means of a relatively clean example.

Complete traceability is maintained in this example between the abstract high-level
safety requirements and the SPARK source code through the formal refinement. The
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importance of this traceability is as follows. Were the SPARK code to be implemented
in communicating digital-computing machines which back up (or even replace!)
the human agents of the system, then this analysis of the system demonstrates that
the logic of the communications, as expressed in these machines, is faultless. This
contrasts favourably with occasional human (mis)performance of these protocols
(consider the Warngau accident [13]).

There remains residual risk, of course, in the risks associated with the ADA com-
piler used on the SPARK source code, the transfer of this object code to the target
hardware, faults associated with the hardware used for running the code and for the
communications, and human factors.

A set of safety requirements which are guaranteed to be adequate are derived by
starting with a very simplistic, seemingly trivial description. The safety requirements
are determined for this first level (Level 0) by enumerating all possible truth functions
(equivalently, assertions modulo logical equivalence) for two trains in the available
language, and determining which of these are safety requirements. It is by no means
the case that this can be done for each and every example. For one to be able to do
so, it is likely necessary that the Level 0 OPRA, as in this case, is very, very simple.

The original dispatching protocol (“Zugleitbetrieb”, ZLB) relies on a single human
operator (the dispatcher, or “Zugleiter”) to make sure that a given track section is
free before allowing any train to enter that section. There are no signals and other
supporting technology to locate trains in progress. The system, as well as its derived
system developed here, relies solely on messages passed between the train conductors
and the dispatcher.

3.4.2 Ontological Hazard Analysis

We illustrate not only the OPRA, but the refinements involved in the OHA and the
derivation of the safety requirements, as an introduction to OHA.

Structure of the Analysis

Figure 3.5 shows the structure of the refinements and traceability proofs of the
Ontological Hazard Analysis performed for this case.
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Figure 3.5: Structure of the OHA

OPRA Analysis at Level 0

The goal of the OPRA analysis at Level O is not to provide a detailed description of
train operations, but rather to provide a description that is so simple that

* we can define safety axioms to which all applications experts can assent, and

* ascertain that these axioms are both correct and complete relative to the expres-
sions of the language.

The train dispatching protocol, in fact most rail operational protocol, divides the
track into sections, called blocks. Here, the blocks are fixed and permanent, as they
are in most rail operations. The object of a dispatching protocol is to ensure that
no two trains occupy the same block, partially or completely, at the same time, in
normal operations, known as “operations under central responsibility” (i.e., that of
the controller/dispatcher). Access to blocks is normally controlled by signals, but
some lines are used infrequently enough that it is not cost-effective to install signals.
Such lines are controlled by human dispatching, as we are considering here.

Trains can also move under “line of sight” operations, in which train drivers can
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Figure 3.6: Schematic Representation of Level O

Sort Description
. Any train or other vehicle operatin
Vehicle Y P &
on tracks
A section of a track inside or outside
Block .
a station

Table 3.1: Level O Sorts

Relation Description
inA(F,S) TrainF is in Block S
ZV(ES) Train F may occupy Block S under central re-

sponsibility (normal scheduledoperation)
ZV(F,S) Train F may occupy Block S under local

responsibility (special case)

LV(ES)

Table 3.2: Level 0 Relations

halt their trains within the space that they can see to be clear, taking into account the
track layout. Line of sight operations take place usually at a very low speed, from
walking pace up to 30-40 km per hour.

There are some low-speed urban rail systems that use moving blocks, which move
along with a train. Such moving-block protocols ensure that no two moving blocks
intersect.

So the purpose of Level 0 is to be able to express that no two trains can occupy the
same block at the same time. The types of objects (here called sorts in the vocabulary
of formal logic) are thus vehicles and blocks, as in Table 3.1. The relations needed
for expressing this mutual exclusion property are listed in Table 3.2.
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Determining Safety Axioms

We use the formal language of quantifier-free predicate logic to express the safety
requirements. The basic vocabulary, the object sorts (properties) and the so-called
“atomic propositions”, is given in Tables 3.1 and 3.2. We need to say that no two trains
can be in the same block at the same time. To do that, we introduce two constants
for objects of sort “vehicle”, namely F1 and F2, and one constant S for one object of
sort “block”.

There are just a certain number of non-equivalent statements in propositional logic
which one can formulate concerning F1, F2 and S using the properties and relations
in Tables 3.1 and 3.2. It is fairly straightforward to list initially 256 statements, to
one of which any statement is obviously equivalent, and from those 256 statements
a certain amount of elementary propositional-logical manipulation reduces these
to a couple of dozen non-equivalent statements. Domain knowledge (the intended
meaning of the symbols in the railway application) results in just 6 statements that
can be regarded as relating to safety. This process is described in detail in Section 3.3
of [17] but omitted here, because this volume is not a treatise on elementary logic.
The 6 statements related to safety, the safety axioms of the development, are listed in
Table 3.3. We use the following shorthand notation for a train F1 and one block S:
IV(F1,S) is written as IV1, ZV(F1,S) is written as LZ1, and inA(F1,S) is written as
inl; similarly for train F2.

Level 1: First Refinement

The generic block of Level 0 is refined as follows, introducing the new sorts Track
and Station. The purpose of this is that there are two kinds of blocks laid down by
the law of German railway operations, a free-track block and a station. This leads
to the sorts found in Table 3.4. The additional relations are in Table 3.5. Meaning
Postulates define what each Level 0 sort and Level O relation means in terms of the
Level 1 language. Using the Meaning Postulates we arrive at 12 Safety Postulates for
Level 1.

The meaning postulates are as follows (where I use the usual terminology A for
logical-AND, V for logical-OR, and 3 for the existential quantifier, “there exists”). The
first postulate says that a Block (from Level 0) is either a Freeblock or a Track:
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If a train is in a block under central re-

ZV1 = —IV1 sponsibility it cannot be there under local
responsibility
If a train is in a block and is not there
=IV1 Ainl = ZV1 under local responsibility then it is under

central responsibility
If a train is in a block under central respon-

inl A ZV1 = —IV1 sibility it cannot be in that block under

local responsibility
If a train is in a block under local responsi-

(F1#4F2) = (ILV1 = —ZV2) | bility another train under central respon-

sibility cannot be in that block
It a train 1s in a block another train under

(F1#F2) = (inl = —ZV2) | central responsibility cannot be in that

block
If a train under central responsibility is

(F1#£F2) = (ZV1=—-2V2) | in a block, another train under central
responsibility cannot be in that block.

Table 3.3: Safety Postulates at Level 0

Block(S) <
(3A3B(Station(A) A Station(B) A terminates(S,A,B)) V Track(S)

The second defines when a train is in a block, by distinguishing the cases of when it
is in a Freeblock and when in a Track:

Block(S) A Train(F) A inA(F,S) <
((3A3B(Station(A) A Station(B) A terminates(S,A,B) A between(F,A,B))V

(Track(S) N inG(F,S)))

The third postulate defines when a train is under central control, namely (again)
either when it is under central control in a Freeblock or when it is under central
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Figure 3.7: Schematic Representation of Level 1

Vehicle Train or other track vehicle

Freeblock A “free” track section outside of a station
Track A piece of track in the station

Station A station where messages are exchanged

Table 3.4: Sorts in Level 1

Relation Description
inG(F,S) Train F is in station Track S
Train F may occupy station Track G under
ZG(F,G) central responsibility (normal scheduled-
operation)
inG(F,G) Train F is in station Track G
inZ(F,A) Train F is at station A
terminates(S, A, B)  Stations A and B terminate block S
between(F,A,B) Train F is between stations A and B
ZZ(F.AB) Train F may travel between stations A and

B under central responsibility

Table 3.5: Level 1 Additional Relations

control in a Track:
Block(S) A Train(F) N ZV(F,S) <

(AT B(Station(A)AStation(B) Aterminates(S,A,B)NZZ(F,A,B))V(Track(S)ANZG(F,S))
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Figure 3.8: Schematic Representation of Level 2

Train F, in station A, has asked for clearance to go to

FA(F,A,B) .
station B

FE(F,A,B) Trai‘n F, in station A, has received clearance to go to
station B

AFE(F.AB) Trai‘n F, in station A, has been denied clearance to go to
station B

KH(F.A,B) No obstr‘uctions are known for train F to go from station
A to station B

Table 3.6: Relations in Level 2
Level 2

In Level 2 no new sorts are added. Additional relations concerning requesting
and receiving “clearances” (permissions to enter a block) are added. We are now
able to build a state-machine representing the global states of clearances which
represents a train journey. The state-machine looks as in Figure 3.9, which is presented
as a Predicate-Action-Diagram [11]. There are in addition three simple Meaning
Postulates, which I don’t show

At this level, some elementary logic leads to two new Safety Postulates. These
are requirements which need to be fulfilled at this level in order to ensure that the
safety requirements at the previous levels, Level 0 and Level 1, can be proved. This
condition is known as the traceability of the Level 0 and Level 1 requirements at Level 2.
The two Safety Postulates can be expressed informally as:
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sO

inZ(F,A)

sl

A nZ(F,A)
NFA(F,A,Next(F,A))
AN —-FE(F,A,Next(F,A))

s2

A nZ(F,A)
ANFA(F,A,Next(F,A))
NKH(F,A,Next(F,A))

s3

NinZ(F,A)
NFA(F,A,Next(F,A))

N -FE(F,A,Next(F,A))
AN - KH(F,A,Next(F,A))
N AFE(F,A,Next(F,A))

s4

AnZ(F,A)

NFA(F,A,Next(F,A))
ANFE(F,A,Next(F,A))
ANKH(F,A,Next(F,A)

S5

Nzw(F,A,Next(F,A))
ANFE(F,A,Next(F,A))
ANKH(F,A,Next(F,A))
A= LV(F)

s6

inZ(F,A)
=50

s7

(a) Predicate-

Nzw(F,A,Next(F,A))
ANFE(F,A,Next(F,A))

N - KH(F,A,Next(F,A))
A= LV(F)

Action-Diagram

(b) States of the PDA

Figure 3.9: The State Machine for Level 2
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* if no obstructions are known and clearance has been given, the block can be
occupied under central responsibility

* clearance for a block cannot be given for a second train, if clearance has already
been given for a train for the same block in either direction.

We will not consider the safety requirements or the traceability of the safety
requirements through the refinement further in this chapter. The main point here is
the OPRA and its connections across the levels of the refinement.

Hazards

There are potentially new hazards identified at every level of the refinement. At Level
2, the newly-identified hazards this are simply the negations of the newly identified
Safety Postulates:

* (Clearance has been given, and no obstruction is known, but the conditions for
occupying the block under central responsibility have not been met.

* Clearance has been given for two trains for the same block at the same time.

Level 3

Level 3 includes the specific defined communications between trains and a dispatcher.

Message types correspond to the states in which the trains can be, and are designed
according to the message types prescribed in the regulations for German non-state-
owned railways [18].

FA Request for Clearance (Fahranfrage)

FE Clearance (Fahrerlaubnis)

AFE Denial of Clearance (Ablehung der Fahrerlaubnis)
AM Notification of Arrival (Ankunftmeldung)

In addition, we define relations to describe sending and receiving of messages:

Message of type MT, concerning train T and station A

Sent(MT,T,A
( ) has been sent.
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FE

Figure 3.10: Schematic Representation of Level 3

Message of type MT, concerning train T and station A

Recd(MT,T,A
ecd(MTTA) has been received.

Note that the sender and receiver of the message are implicit. Messages of type FA
and AM are always sent by the specific train to the dispatcher, messages of type FE
and AFE are always sent by the dispatcher.

Through appropriate Meaning Postulates, the state machine of level 2 can be
augmented to include communications. This now more complex state machine can be
transformed into a Message Flow Graph (MFG), to make the communications visually
clear. The MFG represents the individual agents and their changing states as vertical
lines, message passing between agents as angled lines. The MFG can be formally
shown to define the same global state machine as the Predicate-Action-Diagram for
this level.

The MFG is used as the starting point to define the SPARK implementation and
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Driver Controller

50 50

\
ey

Timeou

additional state Sx

S8
510 59
(undef) s11 Any

~

Figure 3.11: The Message Flow Graph

S12

the SPARK verification conditions are determined by hand to define the MFG as here
pictured.
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MFG-
Driver-State Controller State Global State
Trans.
sO inZ(T,A) - inZ(T,A)
inZ(T,A) A inZ(T,A) A
sO — sl --
Sent(FA,T,Next(T,A)) Sent(FA,T,Next(T,A))
inZ(T,A) A
Sent(FA,T,Next(T,A
s1—s2 |~ Recd (FA, T,Next(T,A)) Aen < ext(TA))
Recd(FA,T,Next(T,A))

Table 3.7: Example Definitions of States and Transitions of the PDA for Level 3

3.5 The Step to Code: A Comment on the Implementation in
SPARK

SPARK is based on a subset of the Ada language. It uses annotations to denote
data and information [1] and to specify pre- and post-conditions for functions and
procedures. The SPARK tools include a static code analyser that uses the annotations
to prove the absence of run-time errors, such as division by zero, buffer overflows
and other bounds violations before the code is actually compiled. Code for train
dispatching was written by Phil Thornley of SparkSure, based on the Message Flow
Graphs. Proofs were completed that the Code fulfills the annotations, and that the
annotations fulfill the Level 3 Message Flow Graph description. The uninterrupted
requirements tracing (the "Safety Postulates") from Level 0 requirements down to the
SPARK source code ensures that the source code fulfils the Safety Requirements of
Level 0.
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