
CHAPTER 6
Case Study: Causal Fault Analysis of an Automobile
Communications Bus: Level 0

6.1 Introduction

There are many introductory hazard analyses (HazAn) of engineered system designs
to be found in safety textbooks. A pressure vessel with relief system is considered
in [4]. A pressure vessel is also the first example in [5] which then includes a small
motor overheating example and follows with a running example of a pressurised-
water reactor, interspersed with a small example of a departure-monitoring device
for a single-track railway. An event tree from an analysis of the Cassini spacecraft
mission is shown as an example in [1], but the first worked-through examples are of
an example reactor protection system, and the Storm Surge Barrier in the Rotterdam
waterway system. Their third example is of a partially-redundant electrical supply
system. Human operation and human error is considered in all three.

While these examples illustrate techniques developed over decades for hazard
and risk analysis, it is typical that examples from the process industries are used,
for this is often where such techniques are either pioneered or matured (Fault Tree
Analysis started with the Minuteman ICBM systems in the US, but is more well-
known from its use in the nuclear-power industry, for example [14]). The general
techniques are not subject-matter-specific, but the characteristics of mechanical or
electrical systems admit the introduction of specific techniques, such as statistical
analyses, which work with the general properties of those systems, for example

144 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

reliability analyses of mechanical system components, whose failure modes are
mostly known and surveyable. In contrast, statistical analyses of designs such as
programmable electronic components whose behavior is driven by often-complex
software is notoriously difficult. Hard constraints bound the assessment of the
reliability of software through testing to a probability of failure per operational
hour of O(10

�5) [10], whereas the desired reliability of the component of which the
programmable electronics is part may well be in the range of O(10

�9
) or lower.

There are some books which describe the adaptation of preferred methods in
other industries to programmable systems, for example [12] describes the adaptation
of the process-industry method of Hazard and Operations Analysis, HAZOP, to the
assessment of software.

6.2 Ontological Hazard Analysis and Causal Fault Analysis

One of the issues with performing hazard analysis for software-based digital com-
ponents of systems is that rarely do these components exhibit dangerous behaviour
in and of themselves. They are connected to devices with safety-critical behaviour,
and are often intended to control those devices, and it is the behaviour of the devices
which is dangerous or not. The software-based digital component may induce this
dangerous behaviour of the device, or not, and thus the behaviour of the digital
system which induces this dangerous device behaviour can inherit the appellation as
“dangerous”.

However, when the software-based digital system is considered independently of
devices which it controls, there are rarely, mostly no, functional behaviours which
can appropriately be labelled “dangerous”. Considered by itself, we are mostly
concerned with whether the software-based digital system operates according to its
requirements, its expectations. When it does not, we say there has been a failure. In
common engineering terminology, a fault is a device state which causes a failure.

Here, we consider a generic communications bus for road transport vehicles. The
usual techniques of potential hazard elicitation may be applied (we use HAZOP
here [12]). Since we consider the bus stand-alone, there is no dangerous behaviour
specified for the communications bus per se. Our analysis is thereby not properly a
hazard analysis, since without dangerous behaviour there can be no hazards. However,
we are searching for anomalous behaviour, failure behaviour which indicates a fault.

6.2 Ontological Hazard Analysis and Causal Fault Analysis 145

This can be accomplished using exactly the same techniques as in OHA, but in this
case we are performing failure analysis rather than hazard analysis. We call the OHA
techniques applied to failure analysis Causal Fault Analysis (CFA). We are cognisant,
though, that a failure of function might well be a hazard in some application in which
that function is critical, so we continue to use the term by calling a functional failure
which we identify a hazardous happenstance or HazHapp.

The CFA is performed here at the high level to some level of detail. This is a generic
analysis for a generic communications bus. It can thus serve as a reference model
for such failure analyses of communications devices. Indeed, the analysis is not even
bound to the bus as being a physical object. If radio communications are considered,
it could even be the “ether”.

6.2.1 Proceeding with CFA

CFA works on a hierarchy of abstractions, in the same way in which hierarchical
decomposition is used in software design [11], and in digital system design in general,
in order to obtain similar benefits. Just as waveforms are interpreted as bits, and
sequences of bits are interpreted as bytes, and bytes are interpreted as various com-
plex data structures; or bytes are interpreted as assembly-language commands, and
sequences of assembly language commands are used to implement memory-variable
assignments, loops, if-then-else statements, or Horn-clause declarative programs
in Prolog, and so on, and these programs in turn are regarded as implementing a
higher-level specification of what the software should do, so CFA works with a similar
hierarchy, guided not by ease of general expression (as in SW-design), but by ease
of expression specifically of HazHapps. Thereby we control the complexity of the
PHA in the same manner in which it is controlled by hierarchical decomposition in
SW specification and design. We assume some level of familiarity with hierarchical
design and decomposition [11].

CFA proceeds by refinement, just the same as in OHA. HazHapps obtain names
in the vocabulary. Some of the HazHapps may be expressible in terms of the vocab-
ulary to hand, in which case meaning postulates containing these definitions are
formulated. Some of them may not be so expressible. Further refinement steps will
be necessary to express them. During the process, some convenient assumptions
ultimately constraining the design of the artifact may be made, such as for example
that a data packet contains an integral number of fields, and fields are always of the

146 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

form <attribute,value>. These constraints must be met in any bus design for which
the analysis is to be valid.

At the end of a refinement stage we have

(a) an explicit vocabulary, the refinement-stage primitives

(b) a list of hazardous happenstances (events or states), HazHapps, with associated
Reliability Requirements or RelReqs, namely mitigation and avoidance techniques),
if such have been identified already,

(c) a list of Meaning Postulates, definitions of vocabulary which have been introduced
during the course of the CFA,

(d) assumptions made during the course of the analysis, typically about the form of
data objects, which simplify the analysis,

(e) introduced vocabulary (new primitive vocabulary), as yet undefined, needed for
expressing the HazHapps identified at this stage.

The goal during a stage, which I call a Level as before, is to be as complete as
possible in compiling (b), in particular in identifying RelReqs; to get as many of the
new primitives defined in terms of the Level primitives by meaning postulates as
possible; and to keep the number of new primitives to a minimum.

When the Level is finished, a new refinement Level must be chosen, and then
worked through similarly. A new refinement Level is chosen by selecting a HazHapp,
or a collection of intuitively related HazHapps, from the list in (b) which we can call
the focus HazHapps for the new refinement Level.

The focus HazHapps are expressed as far as possible by means of the new primitives
in (e) and through additional new primitives introduced for the purpose (and added
to those already in the list in (e)). The goal will be, as in the previous Level, to identify
RelReqs associated with the focus HazHapps, or to reformulate intuitively-similar
focus HazHapps in terms of new primitives and meaning postulates which capture
their common features.

A subsidiary goal at any Level is simultaneously to reduce the new primitives as far
as possible through deriving meaning postulates. When the CFA reaches a Level at
which most of the identified HazHapps have associated RelReqs, it can be terminated.
Those HazHapps without associated RelReqs must be retained and analysed at a later
HazAn Level, or which there will typically be many in a complete system development.
The assumptions listed in (d) must be adhered to, or eliminated, through further

6.2 Ontological Hazard Analysis and Causal Fault Analysis 147

development, at pain of invalidating the analysis.

6.2.2 A Generic Digital-Communication Bus

The generic digital-communication bus is illustrated again in Figure 1. In an auto-
motive application, whence this example was abstracted, sensors measure current
values of such phenomena as force at wheels, rotational speed of wheels, position of
steering frames, and braking. The sensors produce digital values which are transmit-
ted via the bus to command elements such as steering, motor and brake controllers.
These controllers in turn generate commands which are conveyed in digital form
to actuators which implement these commands at the steering, motor or brakes.
The communication bus is a common medium through which all this information is
conveyed.

A single batch of information from a single device which is transmitted as a unit
will be called a message. Each device, sensor, controller or actuator, is connected to
the bus through a management device called a Network Interface Controller (NIC).
Among the tasks of a NIC is to format the information in a form appropriate for bus
transmission, for example, adding a unique identifier for the source of the message
and its intended recipients. The NIC also coordinates the act of transmitting the
message, for example, waiting for an appropriate time slot if the bus is time-triggered.
It also synchronises its internal clock with those of other NICs, so that all NICs have a
similar understanding of which times belong to which time slots. Non-time-triggered
NICs will also implement a protocol to avoid or reconcile collisions between messages
on the bus, when two NICs try to transmit almost simultaneously.

At this point, according to the “life cycle” of IEC 61508 (see [7, Flow Chart, p9]),
one may start to perform a preliminary assessment of the possible failures and
dangerous failures of the communication bus. This is often called by system safety
engineers a Preliminary Hazard Analysis, or PHA.

It is sometimes important to distinguish between a system state (a property of a
system) and an event (a change of state, represented best by two states, a before
state and an after state) [8]. Here, it will first be helpful not to distinguish: let me
call either a state or an event a happenstance. Some happenstances can be hazardous
in some systems. For example, suppose a command message to an actuator to steer
left is corrupted or lost in transit. Likely this will result in a failure of the vehicle to

148 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

Figure 6.1: A Communications Bus

steer left. A failure to steer left on command could inevitably result in an accident
if the road bends sharply left and has a thick wall on its right hand side! Similarly,
a failure to brake on command inevitably results in an accident if there is a wall
right in front of the vehicle. So some happenstances can be hazardous, and without
a specific application is is not possible to say which. I shall thus refer to all of the
failure happenstances as hazardous happenstances.

This terminology is particularly justified if the bus is the single point of communica-
tion of control actions. If a command is given to apply the brakes, and that command
is not received by the brake actuators, and there is only this single command-path,
through messages in the communication bus, between brake command and actuation,
and no alternative physical connection, say through a hydraulic-mechanical system,
we can foresee that the brakes will not be applied. There is a prima facie intuitive
reason for calling it a hazardous happenstance. Similarly, if the steering is only
commanded through the communications bus, and not also by an alternative physical
connection, and the command to steer left is not received by the steering actuator(s),
then we can imagine the vehicle going straight on, and leaving the road, instead
of steering left through a bend in the road; again a potential danger. So loss of a
message is a HazHapp.

We may imagine that if a command to brake harder arrives at the brake actuator

6.3 A Little Elementary Logic and Notation 149

and is read as to brake more lightly, that this is a hazardous happenstance. Or if a
command to steer left arrives at the steering actuator as a command to steer right. So
we may judge that, in some cases, the corruption of a message during transmission,
or a false reading of its contents by an actuator, is a HazHapp.

Not only may loss of a message and corruption of a message be a HazHapps,
so might the incorrect reading of a message by a NIC. These may not be the only
HazHapps, but they are a start for the CFA.

We commence OHA or CFA by asking what kinds of properties, of what kinds
of things (messages), loss and corruption are. We are speaking about information
which is conveyed by messages: commands, values and so on. It follows that we are
speaking of the informational content, the digital interpretation, of whatever passes
along the medium as the message is transmitted.

It is well to distinguish here information from data. The information is, if you like,
the meaning of the message. The data is the particular form which the information
takes - maybe considered as a precise physically continuous waveform which is
actually put on the medium by electronic means by the NICs. Or the data could be
considered as a sequence of 0’s and 1’s into which the waveform is interpreted by
the NICs at each end of the transmission. Both of these representations of data are
obviously distinct from the meaning of the message, the information it conveys.

Further, we might know there can be arbitration difficulties, such as when a
waveform lies on the boundary of what counts as a “1” bit and what counts as a “0”.
Furthermore we might know of so-called Byzantine errors, in which, say, a waveform
on an arbitration boundary is interpreted as a one bit by one device and a zero bit
by another [1]. So we can decide at this point if we are dealing with messages
as physical waveforms, or whether we are dealing with messages as sequential,
structured information, containing values in data types, protocol information, and
so forth, which may be considered, in the usual digital reduction, to be sequences of
bits.

6.3 A Little Elementary Logic and Notation

In this and the following chapter, some syntactic facility with elementary logic and its
notation will help, for example the following.

150 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

• I write 8x .A with a “.” to mean 8x (A).

• I write 8x : X .A, where X is an object type (known in logic rather as a
sort, a unary predicate; the word “type” means something else), to mean
8x (X (x)) A)

• 8x : X8y : Y .A thus means 8x (X (x)) 8y .(Y (y)) A)) which is in turn
equivalent to 8x8y(X (x) AND Y (y)) A).

• An n-ary function can be represented by an (n+1)-ary relation with a meaning
postulate (a constraint), namely F (x) = y can be written as F 0

(x ,y) along with
the postulate (F 0

(x ,y) AND F 0
(x ,z)) y = z). Although in the acronym OPRA

there is no term for “Function”, I shall use function notation willy-nilly with
the understanding as here that it is equivalent to predicates with a functional
constraint if this is desired instead.

• I write a predicate A(x ,y) where the first argument x has type X and
the second argument y has type Y quite often as A(X ,Y) rather than
the more usual (in computer-scientific writing) A(x :X , y:Y). Both mean
A(x ,y) AND X (x) AND Y (y).

• I write “A WHERE B” sometimes, which means in logical syntax “B) A”.

6.4 Level 0

We call the highest level Level 0. Level 0 is a very abstract view of the system. As in
hierarchical design, a lower level will define objects and properties at a higher level
by means of its own objects and properties. For example, in hierarchical design, a
natural number (non-negative integer in mathematics) may be defined in terms of a
non-negative-integer number range. Then an integer number range may be defined
in terms of sequences of bits, with operations on bits implementing the mathematical
operations on integers. To show that the implementation is correct, it must be proved
– verified – that the operations on bits indeed implement the operations on integers
at the higher (mathematical) level. Similarly, it must be verified in CFA that the lower
level objects, properties and relations indeed implement the higher level objects,
properties and relations.

If we were to consider a message as a waveform, its description would be physically
quite complicated, and we would have to worry about properties such as attentuation,

6.4 Level 0 151

arbitration boundaries, and so forth. If we are to consider a message as consisting of
information in the form of data as bits, then its description is much simpler. We must
say only what bit sequences are to be carried, and not be concerned at this Level with
how this is carried out.

We have considered that messages may be lost, for whatever reasons. A message
is lost if it is sent, but no part received by the receiver. Message-content may be
corrupted; that is, may be read differently by the receiver than was written by the
sender, for whatever reasons. What else could happen with messages at this level
of abstraction? Symmetrically to loss, they could be created: that is, a message
received that was not sent. This may seem somewhat fanciful, until one considers
that duplicating a message generates a message that was received (in the second
version) but not sent by the information-originator (only the first was sent by this
originator). Whether messages could be generated in the system, say, by outside
electrical influences on the medium, is a matter for more detailed consideration at
later Levels.

We can now define the formal OPR vocabulary at Level 0.

6.4.1 Objects

So far, we have the following types of objects: medium (Bus), NICs, messages (msgs).
There is only one Bus, but there are typically many NICs and many msgs. Thus are
Bus, NIC, msg types of objects rather than names for specific objects, although Bus
could be considered as one object, since there only one of them.

6.4.2 Properties

I consider the properties of each object type in turn.

Bus The bus itself transmits messages. This is a relation between the bus and
messages, though, not a property of the bus itself. A property which the bus has
is its integrity: is it doing its transmissive job, or is it broken, cut or otherwise
compromised?

We thus have the following property: Integrity(Bus), where we write the object
type in the parameter position. It might be preferable to write, similarly to type
declarations in programming languages, Integrity(X: Bus), but I do not do so.

152 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

NIC The NIC assembles messages from its attached device and transmits the as-
sembled messages to/on the bus. It also receives messages from the bus,
disassembles them and transmits relevant information further to its attached
device. If it performs this task as it is specified, and (we hope!) thereby designed
to do, it retains its integrity. If not, it has lost it.

• In particular, if the NIC becomes unattached from the Bus, then it has lost
integrity. I introduce a relation Attached(NIC,Bus).

• What if the NIC becomes unattached from its associated device? The
associated device is not an object in our list of objects. We can indicate this
by the introduction of a new property of a NIC: AttachedToDevice(NIC) if
it is satisfactorily attached to its associated device.

Correspondingly, we have the following two properties: Integrity(NIC), At-
tached(NIC). Again, we could write Integrity(Y: NIC) and Attached(Y: NIC), but it
seems to me that we can use obvious names such as NIC1, NIC2, etc, to indicate
both an object and its type at this level of discourse, without being too much
concerned about exact syntax.

Msg A message has content. It also has a length, or size. Since the system is real-time,
it can be that certain messages (for example, commands to steer or to brake)
have a deadline by which they must reach their receiver NIC.

We have the properties: Content(msg), Size(msg), Deadline(msg).

Objects Properties

Bus Integrity
NIC Integrity

AttachedToDevice
msg Content

Size
Deadline

Figure 6.2: Level 0 Object Types and Their Properties

6.4 Level 0 153

6.4.3 HazHapps So Far

We have already identified some HazHapps in this initial discussion. They are shown
in Figure 6.3.

NOT-Integrity(Bus)
NOT-Integrity(NIC)
NOT-AttachedToDevice(NIC)

Figure 6.3: Some Initial HazHapps from Properties at Level 0

6.4.4 Relations

A NIC may be attached or not to the bus. I take a NIC to be Attached when it receives
messages intended for it as receiver, and transmits on the bus messages which its
attached device sends. Similarly a message may be on the bus, when the waveform
corresponding to the message is travelling along the bus medium. A message may be
in a NIC when it is being assembled or disassembled.

We have the following relations:

• Attached(NIC,Bus)

• On(msg,Bus)

• In(msg,NIC)

• Sending(msg,NIC)

• Receiving(msg,NIC)

The relations may be arrayed in a table as in Figure 6.4, in which an X indicates that
the relation has the object type as an argument. An additional HazHapp has resulted
from our immediate consideration of the relations, in Figure 6.5.

Figures 6.2 and 6.4 constitute the definition of the vocabulary for (a) of Level 0. This
vocabulary will be extended forthwith.

154 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

Relation Bus NIC msg

Attached X X
On X X
In X X

Sending X X
Receiving X X

Figure 6.4: Level 0 Relations Amongst Object Types

NOT-Attached(NIC,Bus)

Figure 6.5: An Additional HazHapp from the Relations at Level 0

6.4.5 Meaning Postulates

So far, the vocabulary is just words. But words have meanings, in particular the words
used have particular intended meanings for the bus and associated NICs and msgs.
The property of being Sent or being Received by a NIC entails that a msg is at the same
time On the Bus. It also entails that it is not yet In the receiving NIC. This is part of
what we mean by asserting Sent or Received1. It could be otherwise: I could have
intended “received” to mean that a msg is in the NIC, having been completely read
from the Bus by the NIC, and therefore no longer partly On the Bus. But I did not
choose this second option; I chose the first. I have to mark this distinction somehow –
we have to say what we mean by use of the words. We do this in part in OHA and CFA
through enumerating logical relations between the relations, properties and objects.
These logical assertions are called meaning postulates.

So far we have the following partial meaning postulates (they are partial because
they do not define an equivalence of meaning, but only state an implication):

Sending(msg,NIC)) On(msg,Bus)
Receiving(msg,NIC)) On(msg,Bus)

1 I shall not use italic script further for formal OPR elements. I shall capitalise property and relation
names.

6.4 Level 0 155

We have also noted that when a NIC becomes unattached to its associated device
or to the Bus, the Integrity of the NIC has been lost. This can be expressed using the
partial meaning postulates:

NOT AttachedToDevice(NIC)) NOT Integrity(NIC)
NOT Attached(NIC,Bus)) NOT Integrity(NIC)

We can modify these logically. In classical propositional logic, the rule of contraposi-
tion is valid, which says that

(A) B) , (¬B) ¬A)

We could thus reinterpret the two partial meaning postulates more simply:

Integrity(NIC)) AttachedToDevice(NIC)
Integrity(NIC)) Attached(NIC,Bus)

However, the visible connection with HazHapps thereby disappears.

We might be tempted to define certain states of the system in terms of time, what
has happened and what is to happen, using tense-logical operators Sometime-In-The-
Past, Always-In-The-Past, Sometime-In-The-Future and Always-In-The-Future, which has
proven to be a great help in terms of expressing desirable properties of behavioural
systems [9]. Two of these operators have symbols associated with them, namely

• Sometime-In-The-Future: 3
• Always-In-The-Future: 2

and we can use the following derived symbols:

• Sometime-In-The-Past: 3P

• Always-In-The-Past: 2P

Use of the tense-logical operators does complicate the formal logic somewhat: this
form of tense logic is much less well-developed in terms of usable automated or semi-
automated tools and techniques than predicate or propositional logic. However, tense
logic has expressive advantages for requirements, which is what we are concerned
with here. For example, we can define the following meaning postulates for further
propertiest:

Sent(msg,NIC) , NOT Sending(msg,NIC) AND 3P(Sending(msg,NIC))

Received(msg,NIC) , 3P(Receiving(msg,NIC)) AND NOT On(msg,Bus)

156 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

These two predicates are not symmetric. It should be obvious that a message that
has been Received by its NIC is no longer On the Bus. However, a message can have
been Sent and still be in transit, so it is On the Bus. Or it might have been Sent and
already Received, in which case it is no longer On the Bus. We shall see later that not
expressing the status of the message on the medium after it has been Sent will enable
us to express the loss of a message, which we have already identified as a HazHapp,
and will do so again when we apply the HAZOP guide words, the keywords, to the
vocabulary developed so far.

We recall, though, that the point of the current exercise is to identify and analyse
HazHapps that occur with the communications bus and not to axiomatise all proper-
ties of the bus, which is maybe a useful exercise for developing a facility with logical
expression, but rather more than is strictly needed to find out how things may go
wrong.

To summarise the OPRA so far, we have

• the definitions of the Objects, Properties and Relations

• new Assertions: the partial meaning postulates for

– Sending

– Receiving

– NOT AttachedToDevice

– NOT Attached

• new Assertions: the meaning postulates for

– Sent

– Received

• four HazHapps already

6.4.6 Using HAZOP

We have a vocabulary for expressing some high-level properties and relations of
the bus and associated objects. We can now look to identify HazHapps which are
describable with this vocabulary or with an extension of the vocabulary by applying
HAZOP.

HAZOP is a technique which, in its original form, depends crucially on group-think

6.4 Level 0 157

[12]. My research group has found that in CFA one person working alone, and then
checking results with colleagues, can mostly bring those colleagues to consensus
on hisher application of HAZOP. We surmise that this is because much of the work
is performed by the refinement process, HAZOP being used primarily to provoke
thought. If a hazard is missed at one Level, we have experienced that it is likely to
turn up at a later Level. We have no theoretical grounds for this observation. The
phenomenon does reduce the personpower resources needed to perform a satisfactory
hazard analysis or failure analysis.

There are examples of OHA in which HAZOP turned out to be entirely superfluous
to the HazAn, as we saw in Chapter 3 with the railway-control example, in which a
demonstrably-complete set of RelReqs (there, SafeReqs) were derived at Level 0, and
the formal refinement consisted of making the system more concrete while preserving
the SafeReqs through the refinement.

Interpreting HAZOP Guide Words for the Level 0 vocabulary: Properties

We recall that HAZOP uses the “guide words" in Figure 6.6 as hints towards system
properties which might be hazardous or lead to hazardous happenstance.

The first step in a HAZOP is to combine these guide words with system properties
and relations to derive more properties and relations which may be associated with
possible HazHapp. We can start combining them with the properties.

No applies to Integrity(Bus) and Integrity(NIC). Either these devices retain their
integrity, or they have lost it. Exactly what this might mean can be left to more
detailed steps further down in the hierarchy. No other guide words seem to
lead to obvious properties involving Integrity.

That is pretty much it for Integrity of both Bus and NIC. Moving on to Content(msg),
Size(msg) and Deadline(msg), there is somewhat more to be said about the interpre-
tation of the list of guide words. I consider first the combination with Content.

No-Content(msg) seems to be an assertion that the msg has no content. Does it
mean that the msg has been lost? Maybe. It may still be that some formal
details of the msg, say, its ID, are present, but that the substantial information
which is important to the receiver is not longer present. We thereby obtain two
new properties:

158 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

Guide Word Interpretation

No None yet
More None yet
Less None yet

As well as None yet
Part of None yet
Reverse None yet

Other than None yet
Early None yet
Late None yet

Before None yet
After None yet
Faster None yet
Slower None yet

Where else None yet

Figure 6.6: HAZOP Guide Words

• Lost(msg) means the msg has disappeared

• Corrupted(msg) means that some of the msg content has been altered

More-Content(msg) seems to be an assertion that the msg contains additional
material from that which was inserted by its compiling NIC. Has the msg been
corrupted? That depends on whether the additional material is an integral copy
of material that is already contained in the msg. Or may it be that additional,
meaningless information has been added?

Less-Content(msg) seems to be an assertion that the msg has lost some of its original
content. If that has happened, the msg has been corrupted, without doubt. To
say this, we need a new property of a msg, namely Corrupted(msg)

As-well-as-Content(msg) doesn’t seem to carry much of a meaning further than
More-Content.

Part-of-Content(msg) seems to mean that the msg has lost some of its original
content, i.e., the same as Less-Content(msg). I shall use Part-of-Content to
express this.

6.4 Level 0 159

Reverse-Content(msg) seems to mean that the contents of msg have been reversed.
How could this be interpreted? If the message is based on attribute-value
pairs (a pair <attribute, value of attribute>, such as <receive-status,ready>
or <receive-status,occupied>, then it doesn’t matter what order the attributes
and values are sequenced in the message. On the other hand, if the message
is based on fixed fields, where a value is associated with an attribute because
of its sequence position in the message, then it could be that values are read
as values to the wrong attributes. This would be a form of corruption of the
msg. It could also be avoided by using resilient message formatting, such as
attribute-value pairs!

Other-than-Content(msg) seems to mean that the content is other than it should
be, i.e., that the msg has been corrupted. It could also mean that an extra
message appears (On the Bus, or Received by a NIC) that has not explicitly been
generated – a phantom, Phantom(msg).

The keywords Early, Late, Before, After seem more to relate to timing properties of
the msg itself, and not its Content. It could be, of course, that specific fields in the
msg do contain timing information, and this timing information could be distorted as
the keywords imply. This would be a form of message corruption. To interpret this
specific form of corruption would be a task for later Levels, when the msg has been
broken down into its component parts in the hierarchical decomposition.

Where-else-Content(msg) might seem to mean that the msg has been interpreted
(decomposed) by a NIC for which it was not intended. We could express this
assertion by saying, in logic, that the msg has been received by some NIC that
was not its intended receiver:

InappropriateReceiver(msg,NIC1)
,

Received(msg,NIC1) AND NOT (IntendedReceiver(msg,NIC1))

To be able to say this, we would need to introduce the new predicate Intende-
dReceiver.

In summary, combining HAZOP keywords with Content has led to the introduction of:

• the new undefined property Lost(msg)

• the new undefined property Corrupted(msg)

160 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

• the new undefined property Phantom(msg)

• the new undefined relation IntendedReceiver(msg,NIC)

• the new defined relation/meaning postulate InappropriateReceiver

It is intuitively clear that the new properties Lost, Corrupted and Phantom represent
HazHapps of messages, as does inappropriate reception, so we have the additional
HazHapps in Figure 6.7.

Lost(msg)
Corrupted(msg)
Phantom(msg)
InappropriateReceiver(msg,NIC)

Figure 6.7: HazHapps from HAZOP applied to Content(msg)

Relations or Functions?

Rather than consider IntendedReceiver as a relation, we might well consider it as a
function, say

IntendedReceiverF(msg) = NIC1 , IntendedReceiver(msg,NIC)

However, this might unduly restrict the form of expression: a msg might well have
multiple intended receivers, and then a formulation as a function would not work.
We could consider whether we need a function name for the Sender of a message.
A message is created on the Bus when Sending, and it is the unique NIC which is
Sending which is the sender. So the identity of the sender is fixed by the act of
Sending, namely NIC1 is the sender of msg1 precisely when:

Sender(msg1) = NIC1 , Sent(msg1,NIC1)

Continuing the HAZOP: Size(msg)

We have considered the combination of HAZOP keywords so far with Integrity(Bus),
Integrity(NIC) and Content(msg). We complete the HAZOP by considering the
combination of keywords with Size(msg) and Deadline(msg).

6.4 Level 0 161

No-Size(msg) could mean that the message has no size, in other words all substantial
content has been lost. However we take this, it seems to be the same as the
interpretation of No-Content(msg), that is, either Lost(msg) or Corrupted(msg).
Similarly, More-Size with More-Content, Less-Size with Less-Content, Part-of-
Size with Part-of-Content. Reverse-Size seems to have little meaning. Other-
than-Size seems to mean something similar to More-Size or Less-Size. The
keywords Early, Late, Before, After, Faster, Slower and Where-else seem to have
no obvious interpretation with respect to the property Size.

Thus we have not observed any phenomena through considering the combination of
keywords with Size(msg) which we had not already noted.

Continuing the HAZOP: Deadline(msg)

Now to consider the combination of keywords with Deadline(msg). The or-
dering keywords would have an interpretation here: Early-Deadline(msg), Late-
Deadline(msg), Before-Deadline(msg), After-Deadline(msg), Faster-Deadline(msg),
Slower-Deadline(msg). The combinations here seem to suggest the following. Mes-
sages can have an early deadline as well as a late deadline: that is, they are to be
processed within an Interval(msg) = <Earliest(msg),Latest(msg)>, and that the
message can be received outside or partly outside this interval and thus not be pro-
cessed within the intended time – recall our mention earlier of Byzantine failures [1].
This may perhaps be best expressed through two predicates OutsideInterval(msg)
and PartlyOutsideInterval(msg), leaving the details of early/lateness and partially
early/late for further steps in the hierarchical decomposition. These new predicates
OutsideInterval(msg) and PartlyOutsideInterval(msg) are taken here to be primitive
with the expectation that they will be defined in later Levels.

Considering the combination of HAZOP guide words with Deadline(msg), then, we
have identified

• a property (or function) of a message, Interval(msg)

• an assertion OutsideInterval(msg)

• an assertion PartlyOutsideInterval(msg)

We further observed that OutsideInterval and PartlyOutsideInterval could be involved
in hazardous happenstance, as shown in Figure ?? We have now completed the
combination of HAZOP guide words with the Properties. It remains to consider the

162 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

Relations.

OutsideInterval(msg)
PartlyOutsideInterval(msg)

Figure 6.8: HazHapps from HAZOP applied to Deadline(msg)

Continuing the HAZOP: Relations

Considering the relations Attached, On, In, Sending, Receiving, I state without
argumentation that the interpretable keywords are restricted to Not and Partly. The
argumentation is reserved as exercises for the reader in Section 6.5. We have already
considered Not-Attached. Partly-Attached may mean that the NIC appears only
intermittently to be attached, to the medium. Partly-Sending, Partly-Receiving suggest
that a msg is being incompletely put on the Bus, respectively read from the Bus, by
the NIC. These appear to be the only happenstances which we may form using the
keywords which do not occur normally in the course of normal operations. For
example, Partly-On and Partly-In could well refer to a msg in course of being placed
on or received from the Bus by a NIC

6.4.7 HazHapps: Summary and Discussion

The results of applying the HAZOP guide words applied to the Level 0 properties and
relations are summarised in Figure 6.9. We have obtained some insight into what can
go hazardously wrong. We have identified the following hazardous happenstances so
far in Figure 6.10 and now consider them further.

NOT Integrity(Bus) The integrity of the Bus is a physical primitive. This HazHapp
can be expressed using the usual logical operators, here the operator NOT, on
this primitive term.

NOT Integrity(NIC) The integrity of the NIC is a physical primitive. This HazHapp
can be expressed using the usual logical operators, here the operator NOT, on
this primitive term.

NOT AttachedToDevice(NIC) The attachment to its associated device of the NIC is

6.4 Level 0 163

Property Guide Word Object Interpretation

Integrity No Bus has lost integrity
No NIC has lost integrity

Content No msg has been lost, or lost complete content:
Lost(msg)

More msg has gained informational content:
Corrupted(msg)

Less msg has lost informational content:
Corrupted(msg)

Part-of msg same as Less-Content(msg):
Corrupted(msg)

Reverse msg ?non-resilient msg formatting?
otherwise Corrupted(msg)

Other msg has been corrupted:
Corrupted(msg)

Where-else msg IntendedReceiver not reached
Size No msg same as No-Content(msg):

Corrupted(msg)
Deadline msg to be defined through

Interval(msg), OutsideInterval(msg),
PartlyOutsideInterval(msg)

Attached/ No, Partly
On/In/Sending No, Partly

Receiving No, Partly

Figure 6.9: Interpretations of the HAZOP Guide Words

a physical primitive. This HazHapp can be expressed using the usual logical
operators, here the operator NOT, on this primitive term.

NOT Attached(NIC,Bus) The attachment of the NIC to the Bus is a physical primitive.
This HazHapp can be expressed using the usual logical operators, here the
operator NOT, on this primitive term.

Lost(msg) We try to express this hazardous happenstance in the vocabulary we have.
We start by considering what being lost might mean. The answer seems obvious:

164 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

NOT-Integrity(Bus)
NOT-Integrity(NIC)
NOT-AttachedToDevice(NIC)
NOT-Attached(NIC,Bus)
Lost(msg)
Corrupted(msg)
Phantom(msg)
InappropriateReceiver(msg,NIC)
OutsideInterval(msg)
PartlyOutsideInterval(msg)
?Partly-Attached(NIC,Bus)?
?Partly-Sending(msg,NIC)?
?Partly-Receiving(msg,NIC)?

Figure 6.10: HazHapps at Level 0

the message was sent but never received by the receiver. We have to distinguish
this happenstance from the situation in which the message has been sent but
not yet received, because it is still in transit on the Bus. We may express the
difference using the vocabulary we already have, namely that in the second,
normal, case, the message has been sent, not yet received, and is on the Bus;
but in the first case, the message has been sent, not yet received, and is not on
the Bus. It has disappeared from the system:

9 NIC.Sent(msg,NIC) AND NOT(Received(msg,IntendedReceiver(msg)))
AND NOT(On(msg,Bus))

(Here I use the notation 9x.A, with a “.", to say there is an x such that A.) This
shows that we have already developed vocabulary sufficient to define Lost(msg).
We may wish to introduce this term specifically via a meaning postulate:

Lost(msg)
,

9 NIC.Sent(msg,NIC) AND NOT(Received(msg,IntendedReceiver(msg)))
AND NOT(On(msg,Bus))

The use of 9 here is only nominal. We can eliminate its use when we consider

6.4 Level 0 165

that there are only finitely many NICs, say NIC1, NIC2, . . ., NICk. Instead of
writing 9NIC.Sent(msg,NIC), we could instead have written

Sent(msg,NIC1) OR Sent(msg,NIC2) OR OR Sent(msg,NICk)

Corrupted(msg) To talk about message corruption, it seems new vocabulary must
be introduced, since it cannot easily be rephrased in the vocabulary we have.
One way is to introduce a new predicate for it directly, as here. Another
way may be to consider fundamental properties of messages, and rephrase
Corrupted in terms of these fundamental properties. For example, it is very
likely we shall want to speak during the refinement of the content of a message
in terms of its fields and so forth. We could anticipate this by introducing a
new function Content(msg). How might we want to express the content of a
message logically: not its syntactic format (it might have many, say one On
the Bus and another In a NIC), but its intended meaning? We have noted that
an attribute-value-pair representation of messages can mitigate or eliminate
comprehension issues following from a reordering of messages, so we might
want to keep in mind that Content(msg) can be usefully expressed, when it
comes to it, as a list of attribute-value pairs. At this Level, though, we have not
considered what application the Bus is involved in, nor what kinds of messages
are necessary for this application.

It seems apt to take Content as a term To Be Defined at a later Level. We can
use it here to derive a meaning postulate for Corrupted, keeping in mind that
the meaning postulate contains an undefined term which it is expected will be
defined later. If we are willing to use the tense-logical operator 3P , we can
say this: a message has been corrupted if its Content is not the same as it was
sometime in the past:

3P(Sending(msg1,NIC1) AND Content(msg1) = Y)
AND NOT (Content(msg1) = Y)

We can maybe make this a little slicker by introducing a function term for
original content of a message, using the meaning postulate:

OriginalContent(msg1) = Y
,

3P(Sending(msg1,NIC1) AND Content(msg1) = Y)

Then to express message corruption all we need say is

166 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

NOT (OriginalContent(msg1) = Content(msg1))

We can now define Corrupted by means of a meaning postulate for it:

Corrupted(msg1) , NOT (OriginalContent(msg1) = Content(msg1))

Phantom(msg) A phantom is a message that appears on the Bus, or is Received by a
NIC, but was not Sent by anyone:

Phantom(msg)
,

(On(msg,Bus) OR Received(msg,NIC)) AND 8 NIC.NOT Sent(msg,NIC)

Similarly to above, the use of 8 here can be eliminated using NIC1, . . . , NICk
and AND.

InappropriateReceiver We have identified a HazHapp in

Received(msg,NIC) AND NOT (IntendedReceiver(msg) = NIC)

We can call the NIC in this case an inappropriate receiver, and introduce a
meaning postulate for such a term:

InappropriateReceiver(msg,NIC1)
,

Received(msg,NIC1) AND NOT (IntendedReceiver(msg) = NIC1)

OutsideInterval Discussion reserved for a later Level when Interval(msg) is defined
and OutsideInterval is defined on the basis of the definition of Interval.

PartlyOutsideInterval Discussion reserved for a later Level when Interval(msg) is
defined and PartlyOutsideInterval is defined on the basis of the definition of
Interval.

Partly-Attached Discussion reserved for the exercises for the reader.

Partly-Sending Discussion reserved for the exercises for the reader.

Partly-Receiving Discussion reserved for the exercises for the reader.

To summarise, the discussion has yielded meaning postulates for Lost, Corrupted,
Phantom and InappropriateReceiver.

As shown in Figure 6.10, we have identified HazHapps for which new predicates were
introduced but not defined, namely OutsideInterval(msg) and PartlyOutsideInter-
val(msg). We are not able at this Level to introduce meaning postulates to explicate
the meaning of these terms, for they are intended to refer to a timing interval which

6.4 Level 0 167

Predicate Object Types Status

Integrity Bus Physical
Integrity NIC Physical
Attached NIC,Bus Physical
AttachedToDevice NIC Physical
Sent msg,NIC Defined at Level 0
Received msg,NIC Defined at Level 0
Lost msg Defined at Level 0

using IntendedReceiver
Corrupted msg Defined at Level 0

using new function Content(msg)
and/or defined function OriginalContent

Content msg To Be Defined
Phantom msg Defined at Level 0
IntendedReceiver msg, NIC To Be Defined
InappropriateReceiver msg, NIC Defined at Level 0

using IntendedReceiver
Sender msg Defined at Level 0
Interval msg To Be Defined
OutsideInterval msg To Be Defined
PartlyOutsideInterval msg To Be Defined
IntermittentlyAttached NIC,Bus To Be Defined and Discussed
CorruptedSending msg,NIC To Be Defined and Discussed
CorruptedReceiving msg,NIC To Be Defined and Discussed

Figure 6.11: Key Predicates Resulting from the HAZOP Analysis at Level 0

is part of the internal Content(msg), which is at this point an object with no defined
internal structure. The definition of these terms must wait until a later refinement
Level.

HazHapps have also possibly been identified associated with

• Partly-Attached(NIC)

• Partly-Sending(msg,NIC)

168 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

Term Definition

Sent(msg,NIC) NOT Sending(msg,NIC)
AND 3P(Sending(msg,NIC))

Sender(msg1) = NIC1 Sent(msg1,NIC1)
Received(msg,NIC) 3P(Receiving(msg,NIC))

AND NOT On(msg,Bus)
Lost(msg) 9 NIC.Sent(msg,NIC)

AND NOT(Received(msg,IntendedReceiver(msg)))
AND NOT(On(msg,Bus))

OriginalContent(msg1) = Y 3P(Sending(msg1,NIC1)
AND Content(msg1) = Y)

Corrupted(msg1) NOT(OriginalContent(msg1) = Content(msg1))
Phantom(msg) (On(msg,Bus) OR Received(msg,NIC))

AND 8 NIC.NOT Sent(msg,NIC)
InappropriateReceiver(msg,NIC1) Received(msg,NIC1)

AND NOT (IntendedReceiver(msg) = NIC1)

Figure 6.12: Meaning Postulates Introduced at Level 0

Sending(msg,NIC)) On(msg,Bus)
Receiving(msg,NIC)) On(msg,Bus)
NOT AttachedToDevice(NIC)) NOT Integrity(NIC)
NOT Attached(NIC,Bus)) NOT Integrity(NIC)

Figure 6.13: Partial Meaning Postulates Introduced at Level 0

• Partly-Receiving(msg,NIC)

Discussion of these has been reserved for the exercises, but a few words here might
be worthwhile. Partly-Attached, meant to refer to intermittent operation, can possibly
be expressed using tense-logical operators: it was attached, then it wasn’t, then
attached again, then not, and so on. We might wish to distinguish this intermittent
attachment from the case in which the NIC was once not attached, then attached
again, and everything now works fine. This doesn’t seem to be a distinction we can

6.4 Level 0 169

Property Object Types Status

NOT Integrity Bus Primitive
NOT Integrity NIC Primitive
NOT AttachedToDevice NIC Primitive
NOT Attached NIC,Bus Primitive
Lost msg Defined at Level 0
Corrupted msg Defined via undefined

term Content, to
be defined at a later Level

Phantom msg Defined at Level 0
InappropriateReceiver msg,NIC Defined via undefined

term IntendedReceiver, to
be defined at a later Level

OutsideInterval msg To Be Defined
PartlyOutsideInterval msg To Be Defined
IntermittentlyAttached NIC,Bus Not Treated Yet
CorruptedSending msg,NIC Not Treated Yet
CorruptedReceiving msg,NIC Not Treated Yet

Figure 6.14: HazHapps Identified at Level 0 With Their Status

make with the current vocabulary. It may be worthwhile to introduce a new predicate
IntermittentlyAttached(NIC) and to define it in later Levels of the refinement. Partly-
Sending and Partly-Receiving seem to describe situations in which the message to be
transmitted by the NIC is not the same as what goes on the Bus, respectively what
was on the Bus is not the same as what is Received by the NIC. Again, these seem
best definable at a Level at which we know in more detail how a NIC assembles data
for sending or how it parses received data. We can introduce new terms

• IntermittentlyAttached(NIC)

• CorruptedSending(msg,NIC)

• CorruptedReceiving(msg,NIC)

whose definitions are to be given, maybe at Level 0, or maybe at later Levels of
the refinement. Further consideration and discussion is left for the exercises. We

170 6 Case Study: Causal Fault Analysis of an Automobile Communications Bus: Level 0

substitute these terms for Partly-Attached, Partly-Sending and Partly-Receiving in
Figure 6.11 and subsequently.

6.4.8 Summary of Level 0

We have identified between ten and thirteen forms of HazHapp, depending on what
we might make of Partly-Attached, Partly-Sending and Partly-Receiving. We have
introduced some new terms (predicates and so on), listed in Figure 6.11, some
defined at Level 0 and some requiring definition at later Levels. We are now finished
with the first iteration of the CFA.

None so far

Figure 6.15: Assumptions on Which HazAn is Based, Level 0

In order to make the meaning postulates and define the vocabulary involved in
identifying the HazHapps, as well as stating the assumptions, we introduced some
further vocabulary that is not yet itself the subject of meaning postulates in Level 0,
that must be defined by meaning postulates in later Levels. This vocabulary is listed
in Figure 6.16. It consists entirely of predicates and relations, and no new objects,
although it could profitably be considered whether Content is best considered as an
object.

Content(msg,X)
IntendedReceiver(msg)

Interval(msg)
OutsideInterval(msg)

PartlyOutsideInterval(msg)
IntermittentlyAttached(NIC)
CorruptedSending(msg,NIC)

CorruptedReceiving(msg,NIC)

Figure 6.16: New Vocabulary to be Defined at Later Levels

6.5 Exercises 171

6.4.9 Hazardous Factor Mitigation and Avoidance

At this Level, we have a vocabulary of objects (object types), their properties and
relations, and we have identified within this vocabulary between ten and thirteen
forms of HazHapp. Each of these phenomena must be addressed: either avoided or
mitigated at Level 0, or to be addressed in further refinement levels.

One particular concept stands out. Corruption of msgs, along with CorruptedSend-
ing and CorruptedReceiving, can be standardly handled by using such well-known
methods as checksums such as Cyclic Redundancy Codes (CRCs). Such use would
avoid three of the thirteen HazHapps identified so far. It would also avoid the
necessity of defining the new term Content.

6.5 Exercises

1. Investigate, define and justify the HazHapps associated with NOT Attached,
NOT On, NOT In, NOT Sending and NOT Receiving.

2. Investigate, define and justify the HazHapps associated with Partly-Attached,
Partly-On, Partly-In, Partly-Sending and Partly-Receiving.

3. Define what might be meant by IntermittentlyAttached(NIC). Try to formulate
a formal definition in terms of Level 0 vocabulary and logic.

4. Define what might be meant by CorruptedSending(msg,NIC). Try to formulate
a formal definition in terms of Level 0 vocabulary and logic.

5. Define what might be meant by CorruptedReceiving(msg,NIC). Try to formulate
a formal definition in terms of Level 0 vocabulary and logic.

Bibliography

[1] Tim Bedford and Roger Cooke, Probabilistic Risk Analysis: Foundations and
Methods. Cambridge University Press, 2001

[2] Kevin Driscoll, Brendan Hall, Håkan Sivenkrona and Phil Zumsteg, Byzan-
tine Fault Tolerance, from Theory to Reality, in Computer Safety, Reliability
and Security, Proceedings of the 22nd International Conference, SAFECOMP
2003, Lecture Notes in Computer Science volume 2788, Springer-Verlag, 2003.
Available from https://www.cs.indiana.edu/classes/p545-sjoh/post/lec/fault-tolerance/Driscoll-

Hall-Sivencrona-Xumsteg-03.pdf , accessed 2017-06-14.

[3] R.W. Hazell, G.V. McHattie and I. Wrightson, Note on Hazard and Operability
Studies [HAZOP], Royal Society of Chemistry, London, 2001.

[4] Daniel M. Kammen and David M. Hassenzahl, Should We Risk It?, Princeton
University Press, 1999.

[5] Hiromitsu Kumamoto and Ernest J. Henley, Probabilistic Risk Assessment and
Management for Scientists and Engineers, Second Edition. IEEE Press, 1996.

[6] Peter Bernard Ladkin, Causal System Analysis, ebook, RVS
Group, University of Bielefeld, 2001. Available at https://rvs-

bi.de/publications/books/CausalSystemAnalysis/index.html , accessed 2016-07-26.

[7] Peter Bernard Ladkin, An Overview of IEC 61508 on E/E/PE-System Functional
Safety, Causalis Limited, 2008. Available from https://causalis.com/90-publications/99-

downloads/IEC61508FunctionalSafety.pdf , accessed 2017-07-31.

[8] Peter Bernard Ladkin, Causal System Analysis, electronic edition, RVS 2001.
Available from https://rvs-bi.de/publications/books/CausalSystemAnalysis/index.html , ac-
cessed 2017-06-14.

174 Bibliography

[9] Leslie Lamport, The Temporal Logic of Actions, ACM Transactions on Program-
ming Languages and Systems 16(3):872-923, May 1994.

[10] Bev Littlewood and Lorenzo Strigini, Validation of ultrahigh dependability for
software-based systems, Comm. ACM 36(11):69-80, November 1993.

[11] David L. Parnas, On the criteria to be used in decomposing systems into
modules, Comm. ACM 15(12):1053-1058, December 1972. Available from
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf , accessed 2017-07-
31.

[12] Felix Redmill, Morris Chudleigh and James Catmur, System Safety: HAZOP and
Software HAZOP, John Wiley and Sons, 1999.

[13] Andrew S. Tanenbaum and David J. Weatherall, Computer Networks, 5th
edition, Prentice-Hall, 2011.

[14] W.E. Vesely, F.F. Goldberg, N.H. Roberts and D.F. Haasl, Fault Tree Handbook,
NUREG 0492, U.S. Nuclear Regulatory Commission, 1981. Available from
https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/

